Channel estimation for underwater acoustic OFDM based on super-resolution network

IF 0.5 Q4 TELECOMMUNICATIONS Internet Technology Letters Pub Date : 2024-01-14 DOI:10.1002/itl2.496
Xuerong Cui, Bin Yuan, Juan Li, Bin Jiang, Shibao Li, Jianhang Liu
{"title":"Channel estimation for underwater acoustic OFDM based on super-resolution network","authors":"Xuerong Cui,&nbsp;Bin Yuan,&nbsp;Juan Li,&nbsp;Bin Jiang,&nbsp;Shibao Li,&nbsp;Jianhang Liu","doi":"10.1002/itl2.496","DOIUrl":null,"url":null,"abstract":"<p>In this letter, we propose a method for underwater acoustic channel estimation that combines image super-resolution (SR) and is named FCDnNet. FCDnNet consists of two parts: Fast Super Resolution Convolutional Neural Network (FSRCNN) and Complex Denoising Convolutional Neural Network (C-DnCNN). FSRCNN extracts effective features of pilot channels, uses deconvolution to achieve SR reconstruction, and generates a pre-estimation channel matrix. C-DnCNN preserves the relative positions of the real and imaginary parts of the channel, fully utilizing amplitude and phase information, and can more effectively recover the channel matrix from the pre-estimation matrix. Experimental results show that the normalized mean square error (NMSE) of FCDnNet is at least 13.1<span></span><math>\n <semantics>\n <mrow>\n <mo>%</mo>\n </mrow>\n <annotation>$$ \\% $$</annotation>\n </semantics></math>–65.2<span></span><math>\n <semantics>\n <mrow>\n <mo>%</mo>\n </mrow>\n <annotation>$$ \\% $$</annotation>\n </semantics></math> lower than other channel estimation methods based on deep learning.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"7 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose a method for underwater acoustic channel estimation that combines image super-resolution (SR) and is named FCDnNet. FCDnNet consists of two parts: Fast Super Resolution Convolutional Neural Network (FSRCNN) and Complex Denoising Convolutional Neural Network (C-DnCNN). FSRCNN extracts effective features of pilot channels, uses deconvolution to achieve SR reconstruction, and generates a pre-estimation channel matrix. C-DnCNN preserves the relative positions of the real and imaginary parts of the channel, fully utilizing amplitude and phase information, and can more effectively recover the channel matrix from the pre-estimation matrix. Experimental results show that the normalized mean square error (NMSE) of FCDnNet is at least 13.1 % $$ \% $$ –65.2 % $$ \% $$ lower than other channel estimation methods based on deep learning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超分辨率网络的水下声波 OFDM 信道估计
在这封信中,我们提出了一种结合图像超分辨率(SR)的水下声道估计方法,并将其命名为 FCDnNet。FCDnNet 由两部分组成:快速超分辨率卷积神经网络(FSRCNN)和复杂去噪卷积神经网络(C-DnCNN)。FSRCNN 提取先导信道的有效特征,使用解卷积实现 SR 重构,并生成预估计信道矩阵。C-DnCNN 保留了信道实部和虚部的相对位置,充分利用了振幅和相位信息,能更有效地从预估计矩阵中恢复信道矩阵。实验结果表明,FCDnNet 的归一化均方误差(NMSE)比其他基于深度学习的信道估计方法至少低 13.1-65.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Medical Security Based Whale Optimization Algorithm (EMSWOA) in Wireless Body Area Networks IIoT-Driven Digital Cockpits Carbon Neutral Assimilation System: Exploratory and Exploitative Green Innovation Enhance Reliability and Security in VANET Using Clustering Based on ANT Colony Optimization and Fuzzy Logic Research on Online Monitoring System of Generator Slip Ring Temperature Based on the Internet of Things and Edge Computing Lightweight Neural Networks on Edge Devices for Real-Time Analysis of Student Movement in Cloud-Assisted Physical Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1