GC-MS characterization of Polygonatum geminiflorum depicted by antibacterial efficacy of the biosynthesized silver nanoparticles using its leaf extract
{"title":"GC-MS characterization of Polygonatum geminiflorum depicted by antibacterial efficacy of the biosynthesized silver nanoparticles using its leaf extract","authors":"","doi":"10.30955/gnj.005495","DOIUrl":null,"url":null,"abstract":"The biological synthesis of nanomaterials is drawing immense interest because of their non-hazardous nature and enormous antimicrobial application. In the present study, we explored Polygonatum geminiflorum Decne for phytochemical profiling and biosynthesis of silver nanoparticles to control soft rot/blackleg and bacterial wilt pathogens of potato through in vitro experiment. Phytochemical screening indicated the presence of important secondary chemicals including tannins, glycosides, flavonoids and terpenoids, while, gas chromatography-mass spectrophotometry (GC-MS) study of leaf extract showed the presence of 30 phytochemicals, the most prominent among which included ç-Sitosterol and n-Hexadecanoic acid. The GC–MS qualitative analysis also supported the presence of bioactive compounds responsible for metal reduction processes and synthesized nanoparticles stabilization. In vitro study showed that concentration of 100µg/mL of AgNPs and AgNPs-PE efficiently control both Erwinia carotovora and Ralstonia solanacearum. The outcomes have provided an improved protocol to use prepared AgNPs against the tested pathogens without health hazards. \n","PeriodicalId":502310,"journal":{"name":"Global NEST: the international Journal","volume":"12 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global NEST: the international Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30955/gnj.005495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The biological synthesis of nanomaterials is drawing immense interest because of their non-hazardous nature and enormous antimicrobial application. In the present study, we explored Polygonatum geminiflorum Decne for phytochemical profiling and biosynthesis of silver nanoparticles to control soft rot/blackleg and bacterial wilt pathogens of potato through in vitro experiment. Phytochemical screening indicated the presence of important secondary chemicals including tannins, glycosides, flavonoids and terpenoids, while, gas chromatography-mass spectrophotometry (GC-MS) study of leaf extract showed the presence of 30 phytochemicals, the most prominent among which included ç-Sitosterol and n-Hexadecanoic acid. The GC–MS qualitative analysis also supported the presence of bioactive compounds responsible for metal reduction processes and synthesized nanoparticles stabilization. In vitro study showed that concentration of 100µg/mL of AgNPs and AgNPs-PE efficiently control both Erwinia carotovora and Ralstonia solanacearum. The outcomes have provided an improved protocol to use prepared AgNPs against the tested pathogens without health hazards.