Steven F. Thornton, Michael J. Spence, S. Bottrell, K. H. Spence
{"title":"Natural attenuation of dissolved petroleum fuel constituents in a fractured Chalk aquifer: Contaminant mass balance with probabilistic analysis","authors":"Steven F. Thornton, Michael J. Spence, S. Bottrell, K. H. Spence","doi":"10.1144/qjegh2023-116","DOIUrl":null,"url":null,"abstract":"\n A plume-scale mass balance is developed to assess the natural attenuation (NA) of dissolved organic contaminants in fractured, dual porosity aquifers. This methodology can be used to evaluate contaminant distribution within the aquifer, plume source term, contaminant biodegradation and plume status. The approach is illustrated for a site on the UK Upper Chalk aquifer impacted by petroleum fuel containing MTBE and TAME. Variability in site investigation data and uncertainty in the mass balance was assessed using probabilistic analysis. The analysis shows that BTEX compounds are biodegraded primarily by denitrification and sulphate reduction in the aquifer, with an equivalent plume-scale first-order biodegradation rate of 0.49 year\n -1\n . Other biodegradation processes are less important. Sorption contributes to hydrocarbon attenuation in the aquifer but is less important for MTBE and TAME. Uncertainty in the plume source term and site hydrogeological parameters had the greatest effect on the mass balance. The probabilistic analysis enabled the most likely long-term composition of the plume source term to be deduced and provided a site-specific estimate of contaminant mass flux for the prediction of plume development. The mass balance methodology provides a novel approach to improve NA assessments for petroleum hydrocarbons and other organic contaminants in these aquifer settings.\n \n \n Thematic collection:\n This article is part of the Monitoring the aquifers collection available at:\n https://www.lyellcollection.org/topic/collections/monitoring-the-aquifers\n \n \n Supplementary material:\n https://doi.org/10.6084/m9.figshare.c.7016429\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"17 4","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2023-116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A plume-scale mass balance is developed to assess the natural attenuation (NA) of dissolved organic contaminants in fractured, dual porosity aquifers. This methodology can be used to evaluate contaminant distribution within the aquifer, plume source term, contaminant biodegradation and plume status. The approach is illustrated for a site on the UK Upper Chalk aquifer impacted by petroleum fuel containing MTBE and TAME. Variability in site investigation data and uncertainty in the mass balance was assessed using probabilistic analysis. The analysis shows that BTEX compounds are biodegraded primarily by denitrification and sulphate reduction in the aquifer, with an equivalent plume-scale first-order biodegradation rate of 0.49 year
-1
. Other biodegradation processes are less important. Sorption contributes to hydrocarbon attenuation in the aquifer but is less important for MTBE and TAME. Uncertainty in the plume source term and site hydrogeological parameters had the greatest effect on the mass balance. The probabilistic analysis enabled the most likely long-term composition of the plume source term to be deduced and provided a site-specific estimate of contaminant mass flux for the prediction of plume development. The mass balance methodology provides a novel approach to improve NA assessments for petroleum hydrocarbons and other organic contaminants in these aquifer settings.
Thematic collection:
This article is part of the Monitoring the aquifers collection available at:
https://www.lyellcollection.org/topic/collections/monitoring-the-aquifers
Supplementary material:
https://doi.org/10.6084/m9.figshare.c.7016429
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.