A deep learning approach for gas sensor data regression: Incorporating surface state model and GRU-based model

Zhuang Yi, Du Yin, Lang Wu, Gaoqiang Niu, Feige Wang
{"title":"A deep learning approach for gas sensor data regression: Incorporating surface state model and GRU-based model","authors":"Zhuang Yi, Du Yin, Lang Wu, Gaoqiang Niu, Feige Wang","doi":"10.1063/5.0160983","DOIUrl":null,"url":null,"abstract":"Metal–oxide–semiconductor (MOS) gas sensors are widely used for gas detection and monitoring. However, MOS gas sensors have always suffered from instability in the link between gas sensor data and the measured gas concentration. In this paper, we propose a novel deep learning approach that combines the surface state model and a Gated Recurrent Unit (GRU)-based regression to enhance the analysis of gas sensor data. The surface state model provides valuable insights into the microscopic surface processes underlying the conductivity response to pulse heating, while the GRU model effectively captures the temporal dependencies present in time-series data. The experimental results demonstrate that the theory guided model GRU+β outperforms the elementary GRU algorithm in terms of accuracy and astringent speed. The incorporation of the surface state model and the parameter rate enhances the model’s accuracy and provides valuable information for learning pulse-heated regression tasks with better generalization. This research exhibits superiority of integrating domain knowledge and deep learning techniques in the field of gas sensor data analysis. The proposed approach offers a practical framework for improving the understanding and prediction of gas concentrations, facilitating better decision-making in various practical applications.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"29 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0160983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–oxide–semiconductor (MOS) gas sensors are widely used for gas detection and monitoring. However, MOS gas sensors have always suffered from instability in the link between gas sensor data and the measured gas concentration. In this paper, we propose a novel deep learning approach that combines the surface state model and a Gated Recurrent Unit (GRU)-based regression to enhance the analysis of gas sensor data. The surface state model provides valuable insights into the microscopic surface processes underlying the conductivity response to pulse heating, while the GRU model effectively captures the temporal dependencies present in time-series data. The experimental results demonstrate that the theory guided model GRU+β outperforms the elementary GRU algorithm in terms of accuracy and astringent speed. The incorporation of the surface state model and the parameter rate enhances the model’s accuracy and provides valuable information for learning pulse-heated regression tasks with better generalization. This research exhibits superiority of integrating domain knowledge and deep learning techniques in the field of gas sensor data analysis. The proposed approach offers a practical framework for improving the understanding and prediction of gas concentrations, facilitating better decision-making in various practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体传感器数据回归的深度学习方法:结合表面状态模型和基于 GRU 的模型
金属氧化物半导体(MOS)气体传感器被广泛用于气体检测和监控。然而,MOS 气体传感器一直存在气体传感器数据与测量气体浓度之间联系不稳定的问题。在本文中,我们提出了一种新颖的深度学习方法,该方法结合了表面状态模型和基于门控循环单元(GRU)的回归,以增强对气体传感器数据的分析。表面状态模型为了解电导率对脉冲加热响应的微观表面过程提供了宝贵的见解,而 GRU 模型则有效捕捉了时间序列数据中存在的时间依赖性。实验结果表明,理论指导下的 GRU+β 模型在精度和速度上都优于基本 GRU 算法。表面状态模型和参数率的加入提高了模型的准确性,并为学习脉冲加热回归任务提供了有价值的信息,具有更好的普适性。这项研究展示了在气体传感器数据分析领域整合领域知识和深度学习技术的优越性。所提出的方法为提高对气体浓度的理解和预测提供了一个实用框架,有助于在各种实际应用中做出更好的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational experiments with cellular-automata generated images reveal intrinsic limitations of convolutional neural networks on pattern recognition tasks Simulation-trained machine learning models for Lorentz transmission electron microscopy Enhanced spectrum prediction using deep learning models with multi-frequency supplementary inputs Cell detection with convolutional spiking neural network for neuromorphic cytometry The development of thermodynamically consistent and physics-informed equation-of-state model through machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1