Integrated Overtaking Model and Safety Analysis for Truck Platooning Requirements on Two-Lane Undivided Highways

Yu (Fred) Song
{"title":"Integrated Overtaking Model and Safety Analysis for Truck Platooning Requirements on Two-Lane Undivided Highways","authors":"Yu (Fred) Song","doi":"10.1177/03611981231220635","DOIUrl":null,"url":null,"abstract":"Truck platooning is a promising solution for enhancing efficiency and reducing fuel consumption in freight transportation. However, overtaking truck platoons poses safety challenges that need to be addressed. This paper employs an overtaking model incorporating lane change dynamics, and a collision risk assessment to evaluate the safety risks involved in overtaking truck platoons. The safety assessment is presented through a numerical analysis that considers three aspects: roadway geometry, traffic conditions, and driver behavior. Scenarios representing different truck platoon lengths, driver behavior, and opposing traffic conditions are evaluated, highlighting their impact on safety. Two major findings from the assessment are that the overtaking distance and time increase linearly as the truck platoon length increases, and potential driver hesitation and the presence of opposing vehicles are shown to increase collision risks. Safety implications are that the length of truck platoons needs to be regulated on two-lane undivided highways; and driver behavior should be considered in the safety assessment and regulation of truck platooning, but further investigations are needed. From the perspective of overtaking, this paper emphasizes the need for safety guidelines and regulations for truck platooning. Policymakers, transportation agencies, and industry stakeholders may utilize the findings to establish standardized safety measures and protocols.","PeriodicalId":309251,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231220635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Truck platooning is a promising solution for enhancing efficiency and reducing fuel consumption in freight transportation. However, overtaking truck platoons poses safety challenges that need to be addressed. This paper employs an overtaking model incorporating lane change dynamics, and a collision risk assessment to evaluate the safety risks involved in overtaking truck platoons. The safety assessment is presented through a numerical analysis that considers three aspects: roadway geometry, traffic conditions, and driver behavior. Scenarios representing different truck platoon lengths, driver behavior, and opposing traffic conditions are evaluated, highlighting their impact on safety. Two major findings from the assessment are that the overtaking distance and time increase linearly as the truck platoon length increases, and potential driver hesitation and the presence of opposing vehicles are shown to increase collision risks. Safety implications are that the length of truck platoons needs to be regulated on two-lane undivided highways; and driver behavior should be considered in the safety assessment and regulation of truck platooning, but further investigations are needed. From the perspective of overtaking, this paper emphasizes the need for safety guidelines and regulations for truck platooning. Policymakers, transportation agencies, and industry stakeholders may utilize the findings to establish standardized safety measures and protocols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双车道非分隔公路上卡车排布要求的综合超车模型和安全分析
卡车编队是提高货运效率和降低燃料消耗的一种有前途的解决方案。然而,卡车编队超车带来的安全挑战亟待解决。本文采用包含变道动力学的超车模型和碰撞风险评估来评估卡车排成车队超车所涉及的安全风险。安全评估通过数值分析进行,考虑了三个方面:道路几何形状、交通状况和驾驶员行为。对代表不同卡车排长、驾驶员行为和对向交通状况的情景进行了评估,强调了它们对安全的影响。评估的两个主要发现是,随着卡车排长的增加,超车距离和时间呈线性增长,而驾驶员的潜在犹豫和对向车辆的存在会增加碰撞风险。对安全的影响是,需要对双车道不分隔高速公路上的卡车排长进行监管;在对卡车排长进行安全评估和监管时,应考虑驾驶员的行为,但还需要进一步的调查。本文从超车的角度出发,强调了制定卡车排车安全指南和法规的必要性。政策制定者、运输机构和行业利益相关者可以利用这些研究结果来制定标准化的安全措施和协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Traffic Safety Analysis using Unmanned Aerial Vehicle Technology at Unsignalized Intersections in Heterogeneous Traffic Role of Bystanders on Women’s Perception of Personal Security When Using Public Transport Comprehensive Investigation of Pedestrian Hit-and-Run Crashes: Applying XGBoost and Binary Logistic Regression Model Insights for Sustainable Urban Transport via Private Charging Pile Sharing in the Electric Vehicle Sector Correlates of Modal Substitution and Induced Travel of Ridehailing in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1