Heat and Mass Transfer Significance on MHD Flow over a Vertical Porous Plate in the Presence of Chemical Reaction and Heat Generation

Q2 Mathematics CFD Letters Pub Date : 2024-01-11 DOI:10.37934/cfdl.16.5.920
Vasa Vijaya Kumar, Mamidi Narsimha Raja Shekar, B Shankar Goud
{"title":"Heat and Mass Transfer Significance on MHD Flow over a Vertical Porous Plate in the Presence of Chemical Reaction and Heat Generation","authors":"Vasa Vijaya Kumar, Mamidi Narsimha Raja Shekar, B Shankar Goud","doi":"10.37934/cfdl.16.5.920","DOIUrl":null,"url":null,"abstract":"Numerical solutions to the problems of heat generation and chemical reaction as well as heat and mass transfer in a 2-D viscous, electrically conducting fluid oscillating through an infinite vertical permeable moving plate in a saturated porous material subject to a transverse magnetic field are considered. The flow equations explain how things work by the Finite Difference Method (FDM). The impacts of different flow factors on flow fields are talked about. It has been found that the velocity of the fluid goes up as both the chemical reaction and the permeability factors increase. Although it keeps rising as the magnetic field factor declines. Also, the concentration keeps enhancing as the chemical reaction factors increase.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.5.920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical solutions to the problems of heat generation and chemical reaction as well as heat and mass transfer in a 2-D viscous, electrically conducting fluid oscillating through an infinite vertical permeable moving plate in a saturated porous material subject to a transverse magnetic field are considered. The flow equations explain how things work by the Finite Difference Method (FDM). The impacts of different flow factors on flow fields are talked about. It has been found that the velocity of the fluid goes up as both the chemical reaction and the permeability factors increase. Although it keeps rising as the magnetic field factor declines. Also, the concentration keeps enhancing as the chemical reaction factors increase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热量和质量传递对存在化学反应和热量生成的垂直多孔板上 MHD 流动的影响
本研究考虑了在横向磁场作用下,二维粘性导电流体振荡通过饱和多孔材料中的无限垂直可渗透移动板时的发热、化学反应以及传热和传质问题的数值解决方案。流动方程通过有限差分法(FDM)解释了其工作原理。讨论了不同流动因素对流场的影响。研究发现,随着化学反应和磁导系数的增加,流体的速度也会增加。尽管随着磁场系数的降低,流体速度会不断上升。此外,随着化学反应因子的增加,浓度也在不断提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1