{"title":"Short-term prediction of on-street parking occupancy using multivariate variable based on deep learning","authors":"Mengqi Lyu , Yanjie Ji , Chenchen Kuai , Shuichao Zhang","doi":"10.1016/j.jtte.2022.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Short-term prediction of on-street parking occupancy is essential to the ITS system, which can guide drivers in finding vacant parking spaces. And the spatial dependencies and exogenous dependencies need to be considered simultaneously, which makes short-term prediction of on-street parking occupancy challenging. Therefore, this paper proposes a deep learning model for predicting block-level parking occupancy. First, the importance of multiple points of interest (POI) in different buffers is sorted by Boruta, used for feature selection. The results show that different types of POI data should consider different buffer radii. Then based on the real on-street parking data, long short-term memory (LSTM) that can address the time dependencies is applied to predict the parking occupancy. The results demonstrate that LSTM considering POI data after Boruta selection (LSTM (+BORUTA)) outperforms other baseline methods, including LSTM, with an average testing MAPE of 11.78%. The selection process of POI data helps LSTM reduce training time and slightly improve the prediction performance, which indicates that complex correlations among the same type of POI data in different buffer zones will also affect the prediction accuracy of LSTM. When there are more restaurants on both sides of the street, the prediction performance of LSTM (+BORUTA) is significantly better than that of LSTM.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":"11 1","pages":"Pages 28-40"},"PeriodicalIF":7.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095756424000011/pdfft?md5=191e9d14b305f376cd76ce76e3f91de1&pid=1-s2.0-S2095756424000011-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756424000011","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Short-term prediction of on-street parking occupancy is essential to the ITS system, which can guide drivers in finding vacant parking spaces. And the spatial dependencies and exogenous dependencies need to be considered simultaneously, which makes short-term prediction of on-street parking occupancy challenging. Therefore, this paper proposes a deep learning model for predicting block-level parking occupancy. First, the importance of multiple points of interest (POI) in different buffers is sorted by Boruta, used for feature selection. The results show that different types of POI data should consider different buffer radii. Then based on the real on-street parking data, long short-term memory (LSTM) that can address the time dependencies is applied to predict the parking occupancy. The results demonstrate that LSTM considering POI data after Boruta selection (LSTM (+BORUTA)) outperforms other baseline methods, including LSTM, with an average testing MAPE of 11.78%. The selection process of POI data helps LSTM reduce training time and slightly improve the prediction performance, which indicates that complex correlations among the same type of POI data in different buffer zones will also affect the prediction accuracy of LSTM. When there are more restaurants on both sides of the street, the prediction performance of LSTM (+BORUTA) is significantly better than that of LSTM.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.