{"title":"Suppression of SPARC Ameliorates Ovalbumin-induced Airway Remodeling via TGFβ1/Smad2 in Chronic Asthma.","authors":"Yun Pan, Dong Zhang, Jintao Zhang, Xiaofei Liu, Jiawei Xu, Rong Zeng, Wenjing Cui, Tian Liu, Junfei Wang, Liang Dong","doi":"10.4168/aair.2024.16.1.91","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Airway remodeling is a critical feature of asthma. Secreted protein acidic and rich in cysteine (SPARC), which plays a cardinal role in regulating cell-matrix interactions, has been implicated in various fibrotic diseases. However, the effect of SPARC in asthma remains unknown.</p><p><strong>Methods: </strong>We studied the expression of SPARC in human bronchial epithelial cells and serum of asthmatics as well as in the lung tissues of chronic asthma mice. The role of SPARC was examined by using a Lentivirus-mediated SPARC knockdown method in the ovalbumin (OVA)-induced asthma mice. The biological processes regulated by SPARC were identified using RNA sequencing. The function of SPARC in the remodeling process induced by transforming growth factor β1 (TGFβ1) was conducted by using SPARC small interfering RNA (siRNA) or recombinant human SPARC protein in 16HBE cells.</p><p><strong>Results: </strong>We observed that SPARC was up-regulated in human bronchial epithelia of asthmatics and the asthmatic mice. The levels of serum SPARC in asthmatics were also elevated and negatively correlated with the forced expiratory volume in one second (FEV1) to forced vital capacity ratio (FVC) (<i>r</i> = -0.485, <i>P</i> < 0.01) and FEV1 (%predicted) (<i>r</i> = -0.425, <i>P</i> = 0.001). In the chronic asthmatic mice, Lentivirus-mediated SPARC knockdown significantly decreased airway remodeling and airway hyper-responsiveness. According to gene set enrichment analysis, negatively enriched pathways found in the OVA + short hairpin-SPARC group included ECM organization and collagen formation. In the lung function studies, knockdown of SPARC by siRNA reduced the expression of remodeling-associated biomarkers, cell migration, and contraction by blocking the TGFβ1/Smad2 pathway. Addition of human recombinant SPARC protein promoted the TGFβ1-induced remodeling process, cell migration, and contraction in 16HBE cells via the TGFβ1/Smad2 pathway.</p><p><strong>Conclusions: </strong>Our studies provided evidence for the involvement of SPARC in the airway remodeling of asthma via the TGFβ1/Smad2 pathway.</p>","PeriodicalId":7547,"journal":{"name":"Allergy, Asthma & Immunology Research","volume":"16 1","pages":"91-108"},"PeriodicalIF":4.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergy, Asthma & Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4168/aair.2024.16.1.91","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Airway remodeling is a critical feature of asthma. Secreted protein acidic and rich in cysteine (SPARC), which plays a cardinal role in regulating cell-matrix interactions, has been implicated in various fibrotic diseases. However, the effect of SPARC in asthma remains unknown.
Methods: We studied the expression of SPARC in human bronchial epithelial cells and serum of asthmatics as well as in the lung tissues of chronic asthma mice. The role of SPARC was examined by using a Lentivirus-mediated SPARC knockdown method in the ovalbumin (OVA)-induced asthma mice. The biological processes regulated by SPARC were identified using RNA sequencing. The function of SPARC in the remodeling process induced by transforming growth factor β1 (TGFβ1) was conducted by using SPARC small interfering RNA (siRNA) or recombinant human SPARC protein in 16HBE cells.
Results: We observed that SPARC was up-regulated in human bronchial epithelia of asthmatics and the asthmatic mice. The levels of serum SPARC in asthmatics were also elevated and negatively correlated with the forced expiratory volume in one second (FEV1) to forced vital capacity ratio (FVC) (r = -0.485, P < 0.01) and FEV1 (%predicted) (r = -0.425, P = 0.001). In the chronic asthmatic mice, Lentivirus-mediated SPARC knockdown significantly decreased airway remodeling and airway hyper-responsiveness. According to gene set enrichment analysis, negatively enriched pathways found in the OVA + short hairpin-SPARC group included ECM organization and collagen formation. In the lung function studies, knockdown of SPARC by siRNA reduced the expression of remodeling-associated biomarkers, cell migration, and contraction by blocking the TGFβ1/Smad2 pathway. Addition of human recombinant SPARC protein promoted the TGFβ1-induced remodeling process, cell migration, and contraction in 16HBE cells via the TGFβ1/Smad2 pathway.
Conclusions: Our studies provided evidence for the involvement of SPARC in the airway remodeling of asthma via the TGFβ1/Smad2 pathway.
期刊介绍:
The journal features cutting-edge original research, brief communications, and state-of-the-art reviews in the specialties of allergy, asthma, and immunology, including clinical and experimental studies and instructive case reports. Contemporary reviews summarize information on topics for researchers and physicians in the fields of allergy and immunology. As of January 2017, AAIR do not accept case reports. However, if it is a clinically important case, authors can submit it in the form of letter to the Editor. Editorials and letters to the Editor explore controversial issues and encourage further discussion among physicians dealing with allergy, immunology, pediatric respirology, and related medical fields. AAIR also features topics in practice and management and recent advances in equipment and techniques for clinicians concerned with clinical manifestations of allergies and pediatric respiratory diseases.