Evaluation of Extracellular Matrix Remodeling in Full-thickness Skin Grafts in Mice.

IF 1.9 4区 生物学 Q4 CELL BIOLOGY Journal of Histochemistry & Cytochemistry Pub Date : 2024-02-01 Epub Date: 2024-01-24 DOI:10.1369/00221554231225995
Anton Erik Tjust, Urban Hellman, Antonios Giannopoulos, Annika Winsnes, Karin Strigård, Ulf Gunnarsson
{"title":"Evaluation of Extracellular Matrix Remodeling in Full-thickness Skin Grafts in Mice.","authors":"Anton Erik Tjust, Urban Hellman, Antonios Giannopoulos, Annika Winsnes, Karin Strigård, Ulf Gunnarsson","doi":"10.1369/00221554231225995","DOIUrl":null,"url":null,"abstract":"<p><p>Abdominal hernia is a protruding weakness in the abdominal wall. It affects abdominal strength and life quality and can lead to complications due to intestinal entrapment. Autologous full-thickness skin graft (FTSG) has recently become an alternative material for reinforcement in the surgical repair of large abdominal hernias instead of synthetic mesh. FTSG eventually integrates with the abdominal wall, but the long-term fate of the graft itself is not fully understood. This has implications as to how these grafts should be optimally used and handled intraoperatively. This study investigates the remodeling of FTSG in either the onlay or the intraperitoneal position 8 weeks after FTSG transplantation in an experimental mouse model. There was a significant presence of fibroblasts, indicated by vimentin and S100A4 staining, but there were significant variations among animals as to how much of the graft had been remodeled into dense connective tissue. This correlated significantly with the proportion of vimentin-positive cells in the dense connective tissue. We also found that collagen hybridizing peptide staining intensity, a marker of active remodeling, was significantly associated with the proportion of S100A4-positive cells in the dense connective tissue of the FTSG.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":" ","pages":"79-94"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851880/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Histochemistry & Cytochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554231225995","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abdominal hernia is a protruding weakness in the abdominal wall. It affects abdominal strength and life quality and can lead to complications due to intestinal entrapment. Autologous full-thickness skin graft (FTSG) has recently become an alternative material for reinforcement in the surgical repair of large abdominal hernias instead of synthetic mesh. FTSG eventually integrates with the abdominal wall, but the long-term fate of the graft itself is not fully understood. This has implications as to how these grafts should be optimally used and handled intraoperatively. This study investigates the remodeling of FTSG in either the onlay or the intraperitoneal position 8 weeks after FTSG transplantation in an experimental mouse model. There was a significant presence of fibroblasts, indicated by vimentin and S100A4 staining, but there were significant variations among animals as to how much of the graft had been remodeled into dense connective tissue. This correlated significantly with the proportion of vimentin-positive cells in the dense connective tissue. We also found that collagen hybridizing peptide staining intensity, a marker of active remodeling, was significantly associated with the proportion of S100A4-positive cells in the dense connective tissue of the FTSG.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估小鼠全厚皮肤移植的细胞外基质重塑情况
腹疝是腹壁突出的薄弱部位。它影响腹部力量和生活质量,并可能因肠道嵌顿而导致并发症。最近,自体全厚皮肤移植(FTSG)已成为替代合成网片的另一种腹部大疝手术修复加固材料。FTSG 最终会与腹壁融为一体,但移植物本身的长期命运尚不完全清楚。这对如何在术中以最佳方式使用和处理这些移植物产生了影响。本研究在实验小鼠模型中研究了 FTSG 移植 8 周后,FTSG 在腹膜上或腹膜内位置的重塑情况。波形蛋白和 S100A4 染色显示成纤维细胞明显存在,但移植物重塑为致密结缔组织的程度在动物之间存在显著差异。这与致密结缔组织中波形蛋白阳性细胞的比例密切相关。我们还发现,作为活性重塑标记的胶原杂交肽染色强度与 FTSG 致密结缔组织中 S100A4 阳性细胞的比例显著相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
32
审稿时长
1 months
期刊介绍: Journal of Histochemistry & Cytochemistry (JHC) has been a pre-eminent cell biology journal for over 50 years. Published monthly, JHC offers primary research articles, timely reviews, editorials, and perspectives on the structure and function of cells, tissues, and organs, as well as mechanisms of development, differentiation, and disease. JHC also publishes new developments in microscopy and imaging, especially where imaging techniques complement current genetic, molecular and biochemical investigations of cell and tissue function. JHC offers generous space for articles and recognizing the value of images that reveal molecular, cellular and tissue organization, offers free color to all authors.
期刊最新文献
Optimizing Re-staining Techniques for the Restoration of Faded Hematoxylin and Eosin-stained Histopathology Slides: A Comparative Study. George Gomori's Contributions to Diabetes Research and the Origins of the Journal of Histochemistry and Cytochemistry. High M2/M1 Macrophage Ratio Observed in Nasal Polyps Formed in Allergic Fungal Rhinosinusitis. Short-Term Treatment of Melatonin Improves the Expression of Cell Adhesion Molecules in the Testis of the Mouse Cryptorchidism Model. Laminin Beta 2 Is Localized at the Sites of Blood-Brain Barrier and Its Disruption Is Associated With Increased Vascular Permeability, Histochemical, and Transcriptomic Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1