Yan Wang, Wan-Li Ge, Shao-Jun Wang, Yu-Yong Liu, Zhi-Han Zhang, Yang Hua, Xiong-Fei Zhang, Jing-Jing Zhang
{"title":"MiR-548t-5p regulates pancreatic ductal adenocarcinoma metastasis through an IL-33-dependent crosstalk between cancer cells and M2 macrophages.","authors":"Yan Wang, Wan-Li Ge, Shao-Jun Wang, Yu-Yong Liu, Zhi-Han Zhang, Yang Hua, Xiong-Fei Zhang, Jing-Jing Zhang","doi":"10.1080/15384101.2024.2309026","DOIUrl":null,"url":null,"abstract":"<p><p>IL-33 has been associated with pro- and anticancer functions in cancer. However, its role in pancreatic cancer metastasis remains unknown. This study aimed to explore the role of miR-548t-5p/IL-33 axis in the metastasis of pancreatic cancer. Luciferase activity assay, qRT-PCR, Western blot and ELISA were performed to prove whether IL-33 is the target of miR-548t-5p. In vivo metastasis assay and cellular transwell assay were performed to explore the role of miR-548t-5p/IL-33 axis in the invasion and metastasis of pancreatic cancer. Co-culture experiments and immunohistochemistry were performed to observe whether IL-33 affects cell invasion and metastasis dependent on the involvement of M2 macrophages. THP-1 cell induction experiment and flow cytometry were performed to explore the effect of IL-33 on macrophage polarization. CCK-8, colony formation, cell apoptosis, cell cycle, cell wound healing and transwell assay were performed to investigate the effect of IL-33 induced M2 macrophages on cell malignant biological behavior by coculturing pancreatic cancer cells with the conditioned medium (CM) from macrophages. We found that miR-548t-5p regulated the expression and secretion of IL-33 in pancreatic cancer cells by directly targeting IL-33 mRNA. IL-33 secreted by cancer cells promoted the recruitment and activation of macrophages to a M2-like phenotype. In turn, IL-33 induced M2 macrophages promoted the migration and invasion of cancer cells. Moreover, IL-33 affected pancreatic cancer cell invasion dependent on the involvement of M2 macrophages in the co-culture system. Thus, our study suggested that manipulation of this IL-33-dependent crosstalk has a therapeutic potential for the treatment of pancreatic cancer metastasis.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"169-187"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2024.2309026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IL-33 has been associated with pro- and anticancer functions in cancer. However, its role in pancreatic cancer metastasis remains unknown. This study aimed to explore the role of miR-548t-5p/IL-33 axis in the metastasis of pancreatic cancer. Luciferase activity assay, qRT-PCR, Western blot and ELISA were performed to prove whether IL-33 is the target of miR-548t-5p. In vivo metastasis assay and cellular transwell assay were performed to explore the role of miR-548t-5p/IL-33 axis in the invasion and metastasis of pancreatic cancer. Co-culture experiments and immunohistochemistry were performed to observe whether IL-33 affects cell invasion and metastasis dependent on the involvement of M2 macrophages. THP-1 cell induction experiment and flow cytometry were performed to explore the effect of IL-33 on macrophage polarization. CCK-8, colony formation, cell apoptosis, cell cycle, cell wound healing and transwell assay were performed to investigate the effect of IL-33 induced M2 macrophages on cell malignant biological behavior by coculturing pancreatic cancer cells with the conditioned medium (CM) from macrophages. We found that miR-548t-5p regulated the expression and secretion of IL-33 in pancreatic cancer cells by directly targeting IL-33 mRNA. IL-33 secreted by cancer cells promoted the recruitment and activation of macrophages to a M2-like phenotype. In turn, IL-33 induced M2 macrophages promoted the migration and invasion of cancer cells. Moreover, IL-33 affected pancreatic cancer cell invasion dependent on the involvement of M2 macrophages in the co-culture system. Thus, our study suggested that manipulation of this IL-33-dependent crosstalk has a therapeutic potential for the treatment of pancreatic cancer metastasis.
期刊介绍:
Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.