Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy.

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY Journal of Drug Targeting Pub Date : 2024-12-01 Epub Date: 2024-02-01 DOI:10.1080/1061186X.2024.2309661
Miao-Miao Han, Yi-Kai Fan, Yun Zhang, Zheng-Qi Dong
{"title":"Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy.","authors":"Miao-Miao Han, Yi-Kai Fan, Yun Zhang, Zheng-Qi Dong","doi":"10.1080/1061186X.2024.2309661","DOIUrl":null,"url":null,"abstract":"<p><p>The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2309661","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于草药多糖的癌症免疫疗法纳米给药系统的研究进展。
癌症免疫疗法的蓬勃发展为许多患者提供了更好的生存机会,但机遇往往伴随着挑战。单一的免疫疗法并不能很好地根除肿瘤,而且由于免疫疗法药物的靶向性低,往往达不到预期的治疗效果,还会引起更多的副作用。为解决这一问题,研究人员开发了多种纳米给药系统(NDDS)来递送免疫治疗药物,以达到良好的治疗效果。然而,传统的给药系统(DDS)存在生物利用度低、细胞毒性大、合成困难等缺点。中草药多糖(HPS)源自天然中草药,本身具有低毒性。此外,HPS 还具有生物相容性、生物降解性、亲水性、易修饰性和免疫调节活性,在替代传统 DDS 方面具有独特的优势。本综述首先探讨了免疫疗法目前的发展和挑战。随后,重点介绍了 HPS 的免疫调节机制以及将其设计为纳米药物用于肿瘤免疫疗法中的靶向给药。我们的研究结果表明,基于 HPS 的纳米药物在提高癌症免疫疗法疗效方面具有巨大潜力,为未来的临床应用提供了重要的理论基础和实践指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
期刊最新文献
Machine learning for skin permeability prediction: random forest and XG boost regression. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. Clinical evaluation of liposome-based gel formulation containing glycolic acid for the treatment of photodamaged skin. Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1