Rui Barata, Liliana Rocha, Isabel Tavares, Odete Pereira, Filipa Carvalho, João Paulo Oliveira
{"title":"The Complexity of Decisions in Genetics: Annotation of Three Novel Variants in the PKD1 and PKD2 Genes.","authors":"Rui Barata, Liliana Rocha, Isabel Tavares, Odete Pereira, Filipa Carvalho, João Paulo Oliveira","doi":"10.1159/000534969","DOIUrl":null,"url":null,"abstract":"<p><p>As nephrology practice is evolving toward precision medicine, and genetic tests are becoming widely available, basic genetic literacy is increasingly required for clinical nephrologists. Yet, decisions based on results of genetic tests are seldom straightforward. We report a 37-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) who was referred for medically assisted reproduction with monogenic preimplantation genetic testing (PGT-M). The PKD1 and PKD2 genes were screened for pathogenic variants. Sequencing analysis revealed the presence of three novel missense single nucleotide variants, two in the PKD1 gene - c.349T>G, p.(Leu117Val) and c.1736C>T, p.(Pro579Leu); and the third in the PKD2 gene - c.1124A>G, p.(Asn375Ser). Bioinformatic predictions of the functional effects of those three missense variants were inconsistent across different software tools. The family segregation analysis, which was mandatory to identify the relevant variant(s) for PGT-M, strongly supported that the disease-causing variant was PKD1 c.349T>G p.(Leu117Val), while the other two were nonpathogenic or, at most, phenotypic modulators. Proving the pathogenicity of novel variants is often complex but is critical to guide genetic counseling and screening, particularly when discussing reproductive alternatives for primary prevention in the progeny of at-risk couples. The family reported herein illustrates those challenges in the setting of ADPKD, and the invaluable importance of a detailed family history and segregation analysis for proper clinical annotation of novel variants. Basic genetic knowledge and proper clinical annotation of novel allelic variants in genes associated with hereditary kidney disorders are increasingly necessary for the contemporary practice of clinical nephrology.</p>","PeriodicalId":18998,"journal":{"name":"Nephron","volume":" ","pages":"503-507"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000534969","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As nephrology practice is evolving toward precision medicine, and genetic tests are becoming widely available, basic genetic literacy is increasingly required for clinical nephrologists. Yet, decisions based on results of genetic tests are seldom straightforward. We report a 37-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) who was referred for medically assisted reproduction with monogenic preimplantation genetic testing (PGT-M). The PKD1 and PKD2 genes were screened for pathogenic variants. Sequencing analysis revealed the presence of three novel missense single nucleotide variants, two in the PKD1 gene - c.349T>G, p.(Leu117Val) and c.1736C>T, p.(Pro579Leu); and the third in the PKD2 gene - c.1124A>G, p.(Asn375Ser). Bioinformatic predictions of the functional effects of those three missense variants were inconsistent across different software tools. The family segregation analysis, which was mandatory to identify the relevant variant(s) for PGT-M, strongly supported that the disease-causing variant was PKD1 c.349T>G p.(Leu117Val), while the other two were nonpathogenic or, at most, phenotypic modulators. Proving the pathogenicity of novel variants is often complex but is critical to guide genetic counseling and screening, particularly when discussing reproductive alternatives for primary prevention in the progeny of at-risk couples. The family reported herein illustrates those challenges in the setting of ADPKD, and the invaluable importance of a detailed family history and segregation analysis for proper clinical annotation of novel variants. Basic genetic knowledge and proper clinical annotation of novel allelic variants in genes associated with hereditary kidney disorders are increasingly necessary for the contemporary practice of clinical nephrology.
期刊介绍:
''Nephron'' comprises three sections, which are each under the editorship of internationally recognized leaders and served by specialized Associate Editors. Apart from high-quality original research, ''Nephron'' publishes invited reviews/minireviews on up-to-date topics. Papers undergo an innovative and transparent peer review process encompassing a Presentation Report which assesses and summarizes the presentation of the paper in an unbiased and standardized way.