Michael Oluwatoyin Daniyan, Nusrat Omotayo Omisore, Oluwole Isaac Adeyemi, Ayokunmi Stephen Olusa, Samuel Folarin Olaniran, Idris Ajayi Oyemitan, Moses Atanda Akanmu, Gbola Olayiwola
{"title":"An improved method for toxicological profiling of chemical substances.","authors":"Michael Oluwatoyin Daniyan, Nusrat Omotayo Omisore, Oluwole Isaac Adeyemi, Ayokunmi Stephen Olusa, Samuel Folarin Olaniran, Idris Ajayi Oyemitan, Moses Atanda Akanmu, Gbola Olayiwola","doi":"10.1080/15376516.2024.2310012","DOIUrl":null,"url":null,"abstract":"<p><p>Toxicity profiling is an integral part of the drug discovery pipeline. The 3Rs principle-Replacement, Reduction, and Refinement, is considered a golden rule in determining the most appropriate approach for toxicity studies. The acute toxicity study with proper estimate of median lethal dose (LD<sub>50</sub>) is usually an initial procedure for the determination of most suitable test doses for preclinical toxicological and pharmacological profiling. Several methods, which have been devised to determine the LD<sub>50</sub>, are faced with the challenge of using a large number of animals and time constraints. Despite the inherent advantage of the newer OECD Test Guidelines, the increasing concerns among toxicologists, the regulatory authorities and the general public, on the need to adhere to 3Rs principle, necessitated the need for an improved approach. Such an approach should not only minimize the time and number of animals required, but also take into cognizance animal welfare, and give accurate, comparable, and reproducible results across laboratories. While taking advantage of the inherent merits of the existing methods, here is presented the mathematical basis and evaluation of an improved method for toxicity profiling of test substances and estimation of LD<sub>50</sub>. The method makes use of the generated Table of values for the selection of appropriate test doses. Our proposed method has capacities to optimize the time and number of animal use, ensure more reliable and reproducible results across laboratories, allow for easy selection of doses for subsequent toxicity profiling, and be adaptable to other biological screening beyond toxicity studies.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"545-562"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2024.2310012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Toxicity profiling is an integral part of the drug discovery pipeline. The 3Rs principle-Replacement, Reduction, and Refinement, is considered a golden rule in determining the most appropriate approach for toxicity studies. The acute toxicity study with proper estimate of median lethal dose (LD50) is usually an initial procedure for the determination of most suitable test doses for preclinical toxicological and pharmacological profiling. Several methods, which have been devised to determine the LD50, are faced with the challenge of using a large number of animals and time constraints. Despite the inherent advantage of the newer OECD Test Guidelines, the increasing concerns among toxicologists, the regulatory authorities and the general public, on the need to adhere to 3Rs principle, necessitated the need for an improved approach. Such an approach should not only minimize the time and number of animals required, but also take into cognizance animal welfare, and give accurate, comparable, and reproducible results across laboratories. While taking advantage of the inherent merits of the existing methods, here is presented the mathematical basis and evaluation of an improved method for toxicity profiling of test substances and estimation of LD50. The method makes use of the generated Table of values for the selection of appropriate test doses. Our proposed method has capacities to optimize the time and number of animal use, ensure more reliable and reproducible results across laboratories, allow for easy selection of doses for subsequent toxicity profiling, and be adaptable to other biological screening beyond toxicity studies.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.