Ishtiaque Ahammad , Tabassum Binte Jamal , Anika Bushra Lamisa , Arittra Bhattacharjee , Nayeematul Zinan , Md. Zahid Hasan Chowdhury , Shah Mohammad Naimul Islam , Kazi Md. Omar Faruque , Zeshan Mahmud Chowdhury , Mohammad Uzzal Hossain , Keshob Chandra Das , Chaman Ara Keya , Md Salimullah
{"title":"Subtractive genomics study of Xanthomonas oryzae pv. Oryzae reveals repurposable drug candidate for the treatment of bacterial leaf blight in rice","authors":"Ishtiaque Ahammad , Tabassum Binte Jamal , Anika Bushra Lamisa , Arittra Bhattacharjee , Nayeematul Zinan , Md. Zahid Hasan Chowdhury , Shah Mohammad Naimul Islam , Kazi Md. Omar Faruque , Zeshan Mahmud Chowdhury , Mohammad Uzzal Hossain , Keshob Chandra Das , Chaman Ara Keya , Md Salimullah","doi":"10.1016/j.jgeb.2024.100353","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><em>Xanthomonas oryzae</em> pv. <em>oryzae</em> is a plant pathogen responsible for causing one of the most severe bacterial diseases in rice, known as bacterial leaf blight that poses a major threat to global rice production. Even though several experimental compounds and chemical agents have been tested against <em>X. oryzae</em> pv. <em>oryzae</em>, still no approved drug is available. In this study, a subtractive genomic approach was used to identify potential therapeutic targets and repurposible drug candidates that could control of bacterial leaf blight in rice plants.</p></div><div><h3>Results</h3><p>The entire proteome of the pathogen underwent an extensive filtering process which involved removal of the paralogous proteins, rice homologs, non-essential proteins. Out of the 4382 proteins present in <em>Xoo</em> proteome, five hub proteins such as dnaA, dnaN, recJ, ruvA, and recR were identified for the druggability analysis. This analysis led to the identification of dnaN-encoded Beta sliding clamp protein as a potential therapeutic target and one experimental drug named [(5R)-5-(2,3-dibromo-5-ethoxy-4hydroxybenzyl)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid that can be repurposed against it. Molecular docking and 100 ns long molecular dynamics simulation suggested that the drug can form stable complexes with the target protein over time.</p></div><div><h3>Conclusion</h3><p>Findings from our study indicated that the proposed drug showed potential effectiveness against bacterial leaf blight in rice caused by <em>X. oryzae</em> pv. <em>oryzae</em>. It is essential to keep in consideration that the procedure for developing novel drugs can be challenging and complicated. Even the most promising results from <em>in silico</em> studies should be validated through further <em>in vitro</em> and <em>in vivo</em> investigation before approval.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 1","pages":"Article 100353"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687157X24000520/pdfft?md5=c9355b6b58b7db3e5f5d21d6fd2e7041&pid=1-s2.0-S1687157X24000520-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X24000520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Xanthomonas oryzae pv. oryzae is a plant pathogen responsible for causing one of the most severe bacterial diseases in rice, known as bacterial leaf blight that poses a major threat to global rice production. Even though several experimental compounds and chemical agents have been tested against X. oryzae pv. oryzae, still no approved drug is available. In this study, a subtractive genomic approach was used to identify potential therapeutic targets and repurposible drug candidates that could control of bacterial leaf blight in rice plants.
Results
The entire proteome of the pathogen underwent an extensive filtering process which involved removal of the paralogous proteins, rice homologs, non-essential proteins. Out of the 4382 proteins present in Xoo proteome, five hub proteins such as dnaA, dnaN, recJ, ruvA, and recR were identified for the druggability analysis. This analysis led to the identification of dnaN-encoded Beta sliding clamp protein as a potential therapeutic target and one experimental drug named [(5R)-5-(2,3-dibromo-5-ethoxy-4hydroxybenzyl)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acid that can be repurposed against it. Molecular docking and 100 ns long molecular dynamics simulation suggested that the drug can form stable complexes with the target protein over time.
Conclusion
Findings from our study indicated that the proposed drug showed potential effectiveness against bacterial leaf blight in rice caused by X. oryzae pv. oryzae. It is essential to keep in consideration that the procedure for developing novel drugs can be challenging and complicated. Even the most promising results from in silico studies should be validated through further in vitro and in vivo investigation before approval.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts