A novel technique using graph neural networks and relevance scoring to improve the performance of knowledge graph-based question answering systems

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Information Systems Pub Date : 2024-01-22 DOI:10.1007/s10844-023-00839-4
Sincy V. Thambi, P. C. Reghu Raj
{"title":"A novel technique using graph neural networks and relevance scoring to improve the performance of knowledge graph-based question answering systems","authors":"Sincy V. Thambi, P. C. Reghu Raj","doi":"10.1007/s10844-023-00839-4","DOIUrl":null,"url":null,"abstract":"<p>A Knowledge Graph-based Question Answering (KGQA) system attempts to answer a given natural language question using a knowledge graph (KG) rather than from text data. The current KGQA methods attempt to determine whether there is an explicit relationship between the entities in the question and a well-structured relationship between them in the KG. However, such strategies are difficult to build and train, limiting their consistency and versatility. The use of language models such as BERT has aided in the advancement of natural language question answering. In this paper, we present a novel Graph Neural Network(GNN) based approach with relevance scoring for improving KGQA. GNNs use the weight of nodes and edges to influence the information propagation while updating the node features in the network. The suggested method comprises subgraph construction, weighing of nodes and edges, and pruning processes to obtain meaningful answers. BERT-based GNN is used to build subgraph node embeddings. We tested the influence of weighting for both nodes and edges and observed that the system performs better for weighted graphs than unweighted graphs. Additionally, we experimented with several GNN convolutional layers and obtainined improved results by combining GENeralised Graph Convolution (GENConv) with node weights for simple questions. Extensive testing on benchmark datasets confirmed the effectiveness of the proposed model in comparison to state-of-the-art KGQA systems.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-023-00839-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A Knowledge Graph-based Question Answering (KGQA) system attempts to answer a given natural language question using a knowledge graph (KG) rather than from text data. The current KGQA methods attempt to determine whether there is an explicit relationship between the entities in the question and a well-structured relationship between them in the KG. However, such strategies are difficult to build and train, limiting their consistency and versatility. The use of language models such as BERT has aided in the advancement of natural language question answering. In this paper, we present a novel Graph Neural Network(GNN) based approach with relevance scoring for improving KGQA. GNNs use the weight of nodes and edges to influence the information propagation while updating the node features in the network. The suggested method comprises subgraph construction, weighing of nodes and edges, and pruning processes to obtain meaningful answers. BERT-based GNN is used to build subgraph node embeddings. We tested the influence of weighting for both nodes and edges and observed that the system performs better for weighted graphs than unweighted graphs. Additionally, we experimented with several GNN convolutional layers and obtainined improved results by combining GENeralised Graph Convolution (GENConv) with node weights for simple questions. Extensive testing on benchmark datasets confirmed the effectiveness of the proposed model in comparison to state-of-the-art KGQA systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图神经网络和相关性评分提高基于知识图谱的问题解答系统性能的新技术
基于知识图谱的问题解答(KGQA)系统试图利用知识图谱(KG)而不是文本数据来回答给定的自然语言问题。目前的 KGQA 方法试图确定问题中的实体与知识图谱中结构良好的实体之间是否存在明确的关系。然而,这种策略难以构建和训练,限制了其一致性和通用性。语言模型(如 BERT)的使用促进了自然语言问题解答的发展。在本文中,我们提出了一种基于图神经网络(GNN)的相关性评分新方法,用于改进 KGQA。图神经网络利用节点和边的权重来影响信息传播,同时更新网络中的节点特征。建议的方法包括子图构建、节点和边的权重以及剪枝过程,以获得有意义的答案。基于 BERT 的 GNN 用于构建子图节点嵌入。我们测试了节点和边的权重的影响,并观察到该系统对加权图的性能优于非加权图。此外,我们还试验了多个 GNN 卷积层,并通过将 GENeralised Graph Convolution(GENConv)与简单问题的节点权重相结合,获得了更好的结果。在基准数据集上进行的广泛测试证实,与最先进的 KGQA 系统相比,所提出的模型非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
期刊最新文献
Nirdizati: an advanced predictive process monitoring toolkit Graph attention networks with adaptive neighbor graph aggregation for cold-start recommendation FedGR: Cross-platform federated group recommendation system with hypergraph neural networks CONCORD: enhancing COVID-19 research with weak-supervision based numerical claim extraction DA-BAG: A multi-model fusion text classification method combining BERT and GCN using self-domain adversarial training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1