{"title":"Characteristics of the steam degradation of poly(lactic acid) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)","authors":"Zhuze Shao, Shogo Kumagai, Yuko Saito, Toshiaki Yoshioka","doi":"10.1038/s41428-024-00883-z","DOIUrl":null,"url":null,"abstract":"The introduction of biodegradable plastics is considered a practical approach to reducing plastic waste accumulation in the environment. Regardless of their biodegradability, plastics should be recycled to effectively utilize and circulate carbon as a resource. Herein, the use of pyrolysis was examined as a method for recycling two common biobased/biodegradable plastics: PLA and PHBH. The pyrolysis of PLA produced lactides (10.7 wt% at 400 °C), but the yield was decreased when the pyrolysis temperature was increased. The presence of steam promoted the hydrolysis of PLA: a steam concentration of 25 vol % increased, the production of lactides at 400 °C to 17.4 wt%. The pyrolysis of PHBH primarily yielded crotonic acid (30.1 wt% at 400 °C), and the yield increased with increasing pyrolysis temperature (71.8 wt% at 800 °C). Steam injection increased the hydrolysis of oligomers, resulting in a 76.1 wt% yield of crotonic acid at 600 °C with a steam concentration of 25 vol %. Thus, we determined that hydrolysis and pyrolysis progress simultaneously under a steam atmosphere, increasing the chemical feedstock recovery from PLA and PHBH. These findings may lead to the proposal of effective degradation methods for treating biobased/biodegradable plastic wastes and ways to maximize the conversion efficiency and target product yields. Steam decomposition of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) enhanced the recovery of chemical feedstock compared with simple pyrolysis. Steam enhanced the hydrolysis of PLA and resulted in the formation of short-chain compounds with hydroxyl end groups, and subsequent pyrolysis of them improved lactide recovery. Monomer production from PHBH was also enhanced by simultaneous hydrolysis and pyrolysis under steam decomposition.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 4","pages":"455-462"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00883-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00883-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of biodegradable plastics is considered a practical approach to reducing plastic waste accumulation in the environment. Regardless of their biodegradability, plastics should be recycled to effectively utilize and circulate carbon as a resource. Herein, the use of pyrolysis was examined as a method for recycling two common biobased/biodegradable plastics: PLA and PHBH. The pyrolysis of PLA produced lactides (10.7 wt% at 400 °C), but the yield was decreased when the pyrolysis temperature was increased. The presence of steam promoted the hydrolysis of PLA: a steam concentration of 25 vol % increased, the production of lactides at 400 °C to 17.4 wt%. The pyrolysis of PHBH primarily yielded crotonic acid (30.1 wt% at 400 °C), and the yield increased with increasing pyrolysis temperature (71.8 wt% at 800 °C). Steam injection increased the hydrolysis of oligomers, resulting in a 76.1 wt% yield of crotonic acid at 600 °C with a steam concentration of 25 vol %. Thus, we determined that hydrolysis and pyrolysis progress simultaneously under a steam atmosphere, increasing the chemical feedstock recovery from PLA and PHBH. These findings may lead to the proposal of effective degradation methods for treating biobased/biodegradable plastic wastes and ways to maximize the conversion efficiency and target product yields. Steam decomposition of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) enhanced the recovery of chemical feedstock compared with simple pyrolysis. Steam enhanced the hydrolysis of PLA and resulted in the formation of short-chain compounds with hydroxyl end groups, and subsequent pyrolysis of them improved lactide recovery. Monomer production from PHBH was also enhanced by simultaneous hydrolysis and pyrolysis under steam decomposition.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.