Hamid Reza Ashorynejad, Kourosh Javaherdeh, Mehdi Moslemi
{"title":"Effect of Waveform Gas Channel on Liquid Water Movement Emerging from GDL Pore with Lattice Boltzmann Method","authors":"Hamid Reza Ashorynejad, Kourosh Javaherdeh, Mehdi Moslemi","doi":"10.1007/s40997-023-00716-z","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to study the effect of waves from gas channels on the interaction of liquid droplets growing from two micropores in a wavy gas channel of PEMFC. The computational domain consists of a wavy gas channel in which liquid water is injected from two micropores with different diameters from the bottom of the computational domain. Also, the airflow entering the gas channel is fully developed with Poiseuille velocity. A multi-component multiphase pseudopotential Lattice Boltzmann method with a multi-relaxation time collision operator is present to simulate it. The forcing term in the collision operator has been improved to reach the real conditions of liquid water and air component density ratio and thermodynamic consistency. The different parameters such as Capillary number, temperature effect, wave amplitude, micropore diameter, and distance between two micropores on growth, detaching, and movement of liquid in the gas channel are studied. The simulation results indicate that by enhancing the Capillary number, the drag shear force rises, and the droplet detaches faster and improves its movement in the gas channel. Also, it is found that when the micropore diameter increases, the flow pattern changes from dripping flow to a continuous jet regime and raises the water removal time. The simulation is performed for a higher amplitude wavelength ratio to increase the maximum velocity, thus facilitating the droplet exit from the gas channel.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00716-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to study the effect of waves from gas channels on the interaction of liquid droplets growing from two micropores in a wavy gas channel of PEMFC. The computational domain consists of a wavy gas channel in which liquid water is injected from two micropores with different diameters from the bottom of the computational domain. Also, the airflow entering the gas channel is fully developed with Poiseuille velocity. A multi-component multiphase pseudopotential Lattice Boltzmann method with a multi-relaxation time collision operator is present to simulate it. The forcing term in the collision operator has been improved to reach the real conditions of liquid water and air component density ratio and thermodynamic consistency. The different parameters such as Capillary number, temperature effect, wave amplitude, micropore diameter, and distance between two micropores on growth, detaching, and movement of liquid in the gas channel are studied. The simulation results indicate that by enhancing the Capillary number, the drag shear force rises, and the droplet detaches faster and improves its movement in the gas channel. Also, it is found that when the micropore diameter increases, the flow pattern changes from dripping flow to a continuous jet regime and raises the water removal time. The simulation is performed for a higher amplitude wavelength ratio to increase the maximum velocity, thus facilitating the droplet exit from the gas channel.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.