Investigation and Validation of Mission Evaluation Models for Space Close-Range Inspection

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2024-01-24 DOI:10.1155/2024/8841710
Jianyong Zhou, Zhipu Hou, Kebo Li
{"title":"Investigation and Validation of Mission Evaluation Models for Space Close-Range Inspection","authors":"Jianyong Zhou, Zhipu Hou, Kebo Li","doi":"10.1155/2024/8841710","DOIUrl":null,"url":null,"abstract":"Space close-range inspection can be used to carry out close-range observation and monitoring of targets for identifying the target’s types and working states, which is of great significance for space missions such as in-orbit services. The effectiveness evaluation of space inspection tasks will significantly affect the studies on the trajectory design, orbit motion control, and task termination conditions. However, the evaluation models in previous studies are too simple such as that they are usually without considering dynamic changes in the satellite orbit relative motion. Besides, these studies fail to build a comprehensive evaluation model for the whole inspection task process. In this paper, taking the most commonly used optical inspection as an example, the novel multifactor inspection task effectiveness evaluation models were investigated, including the constraint models of observation, the relative distance evaluation model, the effective observation time evaluation model, and the target observation angle evaluation model. These models solve the effectiveness evaluation problem for the complete process of an inspection task, which can support the design of inspection strategies and trajectories better by using the evaluation results. In addition, numerical simulations and 20 semiphysical experiments were carried out to validate the proposed evaluation models.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8841710","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Space close-range inspection can be used to carry out close-range observation and monitoring of targets for identifying the target’s types and working states, which is of great significance for space missions such as in-orbit services. The effectiveness evaluation of space inspection tasks will significantly affect the studies on the trajectory design, orbit motion control, and task termination conditions. However, the evaluation models in previous studies are too simple such as that they are usually without considering dynamic changes in the satellite orbit relative motion. Besides, these studies fail to build a comprehensive evaluation model for the whole inspection task process. In this paper, taking the most commonly used optical inspection as an example, the novel multifactor inspection task effectiveness evaluation models were investigated, including the constraint models of observation, the relative distance evaluation model, the effective observation time evaluation model, and the target observation angle evaluation model. These models solve the effectiveness evaluation problem for the complete process of an inspection task, which can support the design of inspection strategies and trajectories better by using the evaluation results. In addition, numerical simulations and 20 semiphysical experiments were carried out to validate the proposed evaluation models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太空近距离检查飞行任务评估模型的调查与验证
空间近距离巡检可用于对目标进行近距离观测和监测,以识别目标的类型和工作状态,对在轨服务等空间任务具有重要意义。空间检测任务的有效性评估将对轨迹设计、轨道运动控制和任务终止条件的研究产生重大影响。然而,以往研究中的评估模型过于简单,如通常不考虑卫星轨道相对运动的动态变化。此外,这些研究也未能针对整个检测任务过程建立全面的评估模型。本文以最常用的光学检测为例,研究了新型多因素检测任务有效性评价模型,包括观测约束模型、相对距离评价模型、有效观测时间评价模型和目标观测角度评价模型。这些模型解决了检测任务全过程的有效性评价问题,利用评价结果可以更好地支持检测策略和轨迹的设计。此外,还进行了数值模拟和 20 次半物理实验来验证所提出的评价模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1