{"title":"Numerical simulation of rime ice accretion on a three-dimensional wind turbine blade using a Lagrangian approach","authors":"Tiange Zhang, Xuanyi Zhou, Zhenbiao Liu","doi":"10.1007/s11709-023-0971-0","DOIUrl":null,"url":null,"abstract":"<p>The accreted ice on wind turbine blades significantly deteriorates the blade aerodynamic performance and consequently the power production. The existing numerical simulations of blade icing have mostly been performed with the Eulerian approach for two-dimensional (2D) blade profiles, neglecting the possible three-dimensional (3D) rotating effect. This paper conducts a numerical simulation of rime ice accretion on a 3D wind turbine blade using the Lagrangian approach. The simulation results are validated through previously published experimental data. The icing characteristics along the blade radial direction are then investigated in detail. Significant radial airflow along the blade is observed, which demonstrates the necessity of 3D simulation. In addition, more droplets are found to impinge on the blade surface near the tip region, thereby producing severer ice accretion there. The accreted ice increases almost linearly along the blade radial direction in terms of both ice mass and maximum ice thickness.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"113 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0971-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The accreted ice on wind turbine blades significantly deteriorates the blade aerodynamic performance and consequently the power production. The existing numerical simulations of blade icing have mostly been performed with the Eulerian approach for two-dimensional (2D) blade profiles, neglecting the possible three-dimensional (3D) rotating effect. This paper conducts a numerical simulation of rime ice accretion on a 3D wind turbine blade using the Lagrangian approach. The simulation results are validated through previously published experimental data. The icing characteristics along the blade radial direction are then investigated in detail. Significant radial airflow along the blade is observed, which demonstrates the necessity of 3D simulation. In addition, more droplets are found to impinge on the blade surface near the tip region, thereby producing severer ice accretion there. The accreted ice increases almost linearly along the blade radial direction in terms of both ice mass and maximum ice thickness.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.