Riki Herliansyah, Ruth King, Dede Aulia Rahman, Stuart King
{"title":"Animal Density Estimation for Large Unmarked Populations Using a Spatially Explicit Model","authors":"Riki Herliansyah, Ruth King, Dede Aulia Rahman, Stuart King","doi":"10.1007/s13253-023-00598-3","DOIUrl":null,"url":null,"abstract":"<p>Obtaining abundance and density estimates is a particularly important aspect within wildlife conservation and management. To monitor wildlife populations, the use of motion-sensor camera traps is becoming increasing popular due to its non-invasive nature. However, animal identification is not always feasible in practice due to poor quality images and/or individuals not having uniquely identifiable physical characteristics. Spatially explicit models for unmarked individuals permit the estimation of animal density when individuals cannot be uniquely identified. Due to the structure of these models, a Bayesian super-population (data augmentation) approach is often used to fit the models to data, which involves specifying some reasonably large upper limit for the population. However, this approach presents substantial computational challenges for larger populations, as demonstrated by the motivating dataset relating to barking deer (<i>Muntiacus muntjak</i>) collected in Ujung Kulon National Park, Indonesia (with a population size in the low thousands). We develop a new and computationally efficient Bayesian algorithm for fitting the models to data that does not require specifying an upper population limit <i>a priori</i>. We apply the new algorithm to the large barking deer dataset, where the standard super-population approach is computationally expensive, and demonstrate a substantial improvement in computational efficiency.Supplementary material to this paper is provided online.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00598-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Obtaining abundance and density estimates is a particularly important aspect within wildlife conservation and management. To monitor wildlife populations, the use of motion-sensor camera traps is becoming increasing popular due to its non-invasive nature. However, animal identification is not always feasible in practice due to poor quality images and/or individuals not having uniquely identifiable physical characteristics. Spatially explicit models for unmarked individuals permit the estimation of animal density when individuals cannot be uniquely identified. Due to the structure of these models, a Bayesian super-population (data augmentation) approach is often used to fit the models to data, which involves specifying some reasonably large upper limit for the population. However, this approach presents substantial computational challenges for larger populations, as demonstrated by the motivating dataset relating to barking deer (Muntiacus muntjak) collected in Ujung Kulon National Park, Indonesia (with a population size in the low thousands). We develop a new and computationally efficient Bayesian algorithm for fitting the models to data that does not require specifying an upper population limit a priori. We apply the new algorithm to the large barking deer dataset, where the standard super-population approach is computationally expensive, and demonstrate a substantial improvement in computational efficiency.Supplementary material to this paper is provided online.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.