Conductivity Imaging from Internal Measurements with Mixed Least-Squares Deep Neural Networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-23 DOI:10.1137/23m1562536
Bangti Jin, Xiyao Li, Qimeng Quan, Zhi Zhou
{"title":"Conductivity Imaging from Internal Measurements with Mixed Least-Squares Deep Neural Networks","authors":"Bangti Jin, Xiyao Li, Qimeng Quan, Zhi Zhou","doi":"10.1137/23m1562536","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 147-187, March 2024. <br/> Abstract. In this work, we develop a novel approach using deep neural networks (DNNs) to reconstruct the conductivity distribution in elliptic problems from one measurement of the solution over the whole domain. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective, with DNNs as ansatz functions to approximate the conductivity and flux simultaneously. We provide a thorough analysis of the DNN approximations of the conductivity for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters, and neural network architectural parameters (depth, width, and parameter bounds). We also provide multiple numerical experiments in two dimensions and multidimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1562536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 147-187, March 2024.
Abstract. In this work, we develop a novel approach using deep neural networks (DNNs) to reconstruct the conductivity distribution in elliptic problems from one measurement of the solution over the whole domain. The approach is based on a mixed reformulation of the governing equation and utilizes the standard least-squares objective, with DNNs as ansatz functions to approximate the conductivity and flux simultaneously. We provide a thorough analysis of the DNN approximations of the conductivity for both continuous and empirical losses, including rigorous error estimates that are explicit in terms of the noise level, various penalty parameters, and neural network architectural parameters (depth, width, and parameter bounds). We also provide multiple numerical experiments in two dimensions and multidimensions to illustrate distinct features of the approach, e.g., excellent stability with respect to data noise and capability of solving high-dimensional problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合最小二乘深度神经网络根据内部测量结果绘制电导率图像
SIAM 影像科学杂志》第 17 卷第 1 期第 147-187 页,2024 年 3 月。 摘要在这项工作中,我们利用深度神经网络(DNN)开发了一种新方法,通过对整个域的解的一次测量来重建椭圆问题中的电导率分布。该方法基于对控制方程的混合重述,并利用标准最小二乘法目标,以 DNNs 作为解析函数,同时逼近电导率和通量。我们对连续损失和经验损失的 DNN 近似电导率进行了全面分析,包括严格的误差估计,这些误差估计明确反映了噪声水平、各种惩罚参数和神经网络架构参数(深度、宽度和参数边界)。我们还提供了两个维度和多个维度的多个数值实验,以说明该方法的显著特点,如对数据噪声的出色稳定性和解决高维问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1