Bacterial communities in the potato tuberosphere share similarities with bulk soil and rhizosphere communities, yet possess distinct features

IF 2 3区 农林科学 Q3 ECOLOGY Pedobiologia Pub Date : 2024-01-22 DOI:10.1016/j.pedobi.2024.150935
Georgia Voulgari, Achim Schmalenberger
{"title":"Bacterial communities in the potato tuberosphere share similarities with bulk soil and rhizosphere communities, yet possess distinct features","authors":"Georgia Voulgari,&nbsp;Achim Schmalenberger","doi":"10.1016/j.pedobi.2024.150935","DOIUrl":null,"url":null,"abstract":"<div><p>To date, a paucity of studies have examined bacterial communities in tuberospheres. However, the function of these bacterial communities in healthy potato plants is still largely unknown. Here, we aimed to describe the structure and composition of tuberosphere bacteriomes and its capability to make organosulfur plant available using the rhizosphere and bulk soil bacterial community characteristics as a reference. Rhizosphere, tuberosphere and bulk soil was collected from two field grown potato varieties. Bacterial communities were characterized by 16S rRNA gene amplicon sequencing. Bacterial organosulfur mobilization indicators were evaluated with cultivation dependent and independent methods and were correlated (Spearman) with the relative abundance of bacterial families. The structure of tuberosphere bacterial communities either overlapped with the bulk soil or had similarities with the rhizosphere. Relative abundance of specific bacterial families were distinct between bulk soil, tuberosphere and rhizosphere. Tuberospheres had a tendency for higher arylsulfonate utilization compared to bulk soil. The families <em>Sphingomonadaceae, Sphingobacteriaceae</em> and <em>Rhizobiaceae</em> which presented a decline in their relative abundances from the rhizosphere to tuberosphere and bulk soil had positive correlations with organosulfur mobilizing indicators. Potato variety and soil characteristics played a role in structuring the tuberosphere bacterial communities. Tuberospheres represent an environment in-between bulk soil and rhizosphere indicative from the intermediate relative abundances of specific bacterial families. A moderately higher bacterial organosulfur mobilization activity in tuberospheres suggests that this microbial function may serve specific biological roles for potato tubers.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405624009065/pdfft?md5=f58313b2f1df9faee4bf76c177eb9d52&pid=1-s2.0-S0031405624009065-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624009065","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To date, a paucity of studies have examined bacterial communities in tuberospheres. However, the function of these bacterial communities in healthy potato plants is still largely unknown. Here, we aimed to describe the structure and composition of tuberosphere bacteriomes and its capability to make organosulfur plant available using the rhizosphere and bulk soil bacterial community characteristics as a reference. Rhizosphere, tuberosphere and bulk soil was collected from two field grown potato varieties. Bacterial communities were characterized by 16S rRNA gene amplicon sequencing. Bacterial organosulfur mobilization indicators were evaluated with cultivation dependent and independent methods and were correlated (Spearman) with the relative abundance of bacterial families. The structure of tuberosphere bacterial communities either overlapped with the bulk soil or had similarities with the rhizosphere. Relative abundance of specific bacterial families were distinct between bulk soil, tuberosphere and rhizosphere. Tuberospheres had a tendency for higher arylsulfonate utilization compared to bulk soil. The families Sphingomonadaceae, Sphingobacteriaceae and Rhizobiaceae which presented a decline in their relative abundances from the rhizosphere to tuberosphere and bulk soil had positive correlations with organosulfur mobilizing indicators. Potato variety and soil characteristics played a role in structuring the tuberosphere bacterial communities. Tuberospheres represent an environment in-between bulk soil and rhizosphere indicative from the intermediate relative abundances of specific bacterial families. A moderately higher bacterial organosulfur mobilization activity in tuberospheres suggests that this microbial function may serve specific biological roles for potato tubers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马铃薯块茎层中的细菌群落与大块土壤和根瘤菌群落有相似之处,但又具有不同的特征
迄今为止,对块茎球中细菌群落的研究还很少。然而,这些细菌群落在健康马铃薯植株中的功能在很大程度上仍然未知。在此,我们旨在以根瘤菌层和大块土壤细菌群落特征为参考,描述块茎层细菌群落的结构和组成及其使植物获得有机硫的能力。通过 16 S rRNA 基因扩增片段测序确定了细菌群落的特征。细菌有机硫动员指标用依赖于栽培和独立于栽培的方法进行评估,并与细菌家族的相对丰度相关(Spearman)。块茎圈细菌群落的结构要么与块茎土壤重叠,要么与根瘤菌圈相似。块茎土壤、块茎圈和根瘤菌圈中特定细菌家族的相对丰度各不相同。与大块土壤相比,块茎圈对芳基磺酸盐的利用率更高。鞘氨单胞菌科(Sphingomonadaceae)、鞘氨杆菌科(Sphingobacteriaceae)和根瘤菌科(Rhizobiaceae)的相对丰度从根瘤层到块茎层和大块土壤均呈下降趋势,它们与有机硫动员指标呈正相关。块茎层代表了介于大块土壤和根瘤层之间的环境,表明了特定细菌家族的中间相对丰度。块茎圈中的细菌有机硫动员活性略高,这表明这种微生物功能可能对马铃薯块茎具有特殊的生物学作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pedobiologia
Pedobiologia 环境科学-生态学
CiteScore
4.20
自引率
8.70%
发文量
38
审稿时长
64 days
期刊介绍: Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments. Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions. We publish: original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects); descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research; innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and short notes reporting novel observations of ecological significance.
期刊最新文献
Assessment of microbial diversity in various saline soils driven by salt content Editorial Board Assessing extraradical mycelium of mycorrhizal fungi in tropical forests using armored in-growth mesh bags Collembola and ants: Influence of trails of red wood ants (Formica lugubris) on the community of soil springtails Changes in soil arthropods and litter nutrients after prescribed burn in a subtropical moist pastureland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1