Da Lei, Hanmo Xiao, Jianhua Ran, Bin Luo, Guanlu Jiang, Tianlang Xue
{"title":"Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer","authors":"Da Lei, Hanmo Xiao, Jianhua Ran, Bin Luo, Guanlu Jiang, Tianlang Xue","doi":"10.1007/s11803-024-2233-0","DOIUrl":null,"url":null,"abstract":"<p>A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed. The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions. The dynamic response law of a silty clay landslide with an inclined interlayer was summarized. The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements, to avoid the two peaks in the forced deformation of the bridge foundation piles. The “blocking effect” of the bridge foundation piles reduced the deformation of the forward anti-slide piles. The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope. Since the vibration intensified, the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid, the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease, and the spectrum amplitude near the natural vibration frequency increased. The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":"39 4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2233-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed. The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions. The dynamic response law of a silty clay landslide with an inclined interlayer was summarized. The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements, to avoid the two peaks in the forced deformation of the bridge foundation piles. The “blocking effect” of the bridge foundation piles reduced the deformation of the forward anti-slide piles. The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope. Since the vibration intensified, the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid, the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease, and the spectrum amplitude near the natural vibration frequency increased. The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.
期刊介绍:
Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery.
The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.