PlasmoData.jl -- A Julia Framework for Modeling and Analyzing Complex Data as Graphs

David L Cole, Victor M Zavala
{"title":"PlasmoData.jl -- A Julia Framework for Modeling and Analyzing Complex Data as Graphs","authors":"David L Cole, Victor M Zavala","doi":"arxiv-2401.11404","DOIUrl":null,"url":null,"abstract":"Datasets encountered in scientific and engineering applications appear in\ncomplex formats (e.g., images, multivariate time series, molecules, video, text\nstrings, networks). Graph theory provides a unifying framework to model such\ndatasets and enables the use of powerful tools that can help analyze,\nvisualize, and extract value from data. In this work, we present PlasmoData.jl,\nan open-source, Julia framework that uses concepts of graph theory to\nfacilitate the modeling and analysis of complex datasets. The core of our\nframework is a general data modeling abstraction, which we call a DataGraph. We\nshow how the abstraction and software implementation can be used to represent\ndiverse data objects as graphs and to enable the use of tools from topology,\ngraph theory, and machine learning (e.g., graph neural networks) to conduct a\nvariety of tasks. We illustrate the versatility of the framework by using real\ndatasets: i) an image classification problem using topological data analysis to\nextract features from the graph model to train machine learning models; ii) a\ndisease outbreak problem where we model multivariate time series as graphs to\ndetect abnormal events; and iii) a technology pathway analysis problem where we\nhighlight how we can use graphs to navigate connectivity. Our discussion also\nhighlights how PlasmoData.jl leverages native Julia capabilities to enable\ncompact syntax, scalable computations, and interfaces with diverse packages.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Datasets encountered in scientific and engineering applications appear in complex formats (e.g., images, multivariate time series, molecules, video, text strings, networks). Graph theory provides a unifying framework to model such datasets and enables the use of powerful tools that can help analyze, visualize, and extract value from data. In this work, we present PlasmoData.jl, an open-source, Julia framework that uses concepts of graph theory to facilitate the modeling and analysis of complex datasets. The core of our framework is a general data modeling abstraction, which we call a DataGraph. We show how the abstraction and software implementation can be used to represent diverse data objects as graphs and to enable the use of tools from topology, graph theory, and machine learning (e.g., graph neural networks) to conduct a variety of tasks. We illustrate the versatility of the framework by using real datasets: i) an image classification problem using topological data analysis to extract features from the graph model to train machine learning models; ii) a disease outbreak problem where we model multivariate time series as graphs to detect abnormal events; and iii) a technology pathway analysis problem where we highlight how we can use graphs to navigate connectivity. Our discussion also highlights how PlasmoData.jl leverages native Julia capabilities to enable compact syntax, scalable computations, and interfaces with diverse packages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PlasmoData.jl -- 以图表形式建模和分析复杂数据的 Julia 框架
科学和工程应用中遇到的数据集格式复杂(如图像、多变量时间序列、分子、视频、文本串、网络)。图论为此类数据集的建模提供了一个统一的框架,使人们能够使用强大的工具来帮助分析、可视化数据并从中提取价值。在这项工作中,我们介绍了 PlasmoData.jl,这是一个开源的 Julia 框架,它使用图论的概念来促进复杂数据集的建模和分析。我们框架的核心是一个通用的数据建模抽象,我们称之为数据图(DataGraph)。我们展示了如何利用该抽象和软件实现将各种数据对象表示为图,并利用拓扑学、图论和机器学习(如图神经网络)工具来完成各种任务。我们通过使用真实数据集来说明该框架的多功能性:i) 图像分类问题,使用拓扑数据分析从图模型中提取特征来训练机器学习模型;ii) 疾病爆发问题,我们将多变量时间序列建模为图来检测异常事件;iii) 技术路径分析问题,我们强调了如何使用图来导航连接性。我们的讨论还强调了 PlasmoData.jl 如何利用原生的 Julia 功能来实现紧凑的语法、可扩展的计算以及与不同软件包的接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1