Identification of human microRNA-disease association via low-rank approximation-based link propagation and multiple kernel learning

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2024-01-22 DOI:10.1007/s11704-023-2490-5
Yizheng Wang, Xin Zhang, Ying Ju, Qing Liu, Quan Zou, Yazhou Zhang, Yijie Ding, Ying Zhang
{"title":"Identification of human microRNA-disease association via low-rank approximation-based link propagation and multiple kernel learning","authors":"Yizheng Wang, Xin Zhang, Ying Ju, Qing Liu, Quan Zou, Yazhou Zhang, Yijie Ding, Ying Zhang","doi":"10.1007/s11704-023-2490-5","DOIUrl":null,"url":null,"abstract":"<p>Numerous studies have demonstrated that human microRNAs (miRNAs) and diseases are associated and studies on the microRNA-disease association (MDA) have been conducted. We developed a model using a low-rank approximation-based link propagation algorithm with Hilbert–Schmidt independence criterion-based multiple kernel learning (HSIC-MKL) to solve the problem of the large time commitment and cost of traditional biological experiments involving miRNAs and diseases, and improve the model effect. We constructed three kernels in miRNA and disease space and conducted kernel fusion using HSIC-MKL. Link propagation uses matrix factorization and matrix approximation to effectively reduce computation and time costs. The results of the experiment show that the approach we proposed has a good effect, and, in some respects, exceeds what existing models can do.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2490-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies have demonstrated that human microRNAs (miRNAs) and diseases are associated and studies on the microRNA-disease association (MDA) have been conducted. We developed a model using a low-rank approximation-based link propagation algorithm with Hilbert–Schmidt independence criterion-based multiple kernel learning (HSIC-MKL) to solve the problem of the large time commitment and cost of traditional biological experiments involving miRNAs and diseases, and improve the model effect. We constructed three kernels in miRNA and disease space and conducted kernel fusion using HSIC-MKL. Link propagation uses matrix factorization and matrix approximation to effectively reduce computation and time costs. The results of the experiment show that the approach we proposed has a good effect, and, in some respects, exceeds what existing models can do.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于低秩近似的链接传播和多核学习识别人类 microRNA 与疾病的关联性
大量研究表明,人类微RNA(miRNA)与疾病存在关联,并开展了微RNA与疾病关联(MDA)的研究。我们利用基于低秩近似的链接传播算法和基于希尔伯特-施密特独立性准则的多核学习(HSIC-MKL)建立了一个模型,解决了传统生物学实验涉及 miRNA 和疾病的时间投入大、成本高的问题,提高了模型效果。我们在 miRNA 和疾病空间构建了三个核,并利用 HSIC-MKL 进行了核融合。链接传播采用矩阵因式分解和矩阵逼近,有效降低了计算成本和时间成本。实验结果表明,我们提出的方法效果良好,在某些方面甚至超过了现有模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model SEOE: an option graph based semantically embedding method for prenatal depression detection FedTop: a constraint-loosed federated learning aggregation method against poisoning attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1