{"title":"Identification of human microRNA-disease association via low-rank approximation-based link propagation and multiple kernel learning","authors":"Yizheng Wang, Xin Zhang, Ying Ju, Qing Liu, Quan Zou, Yazhou Zhang, Yijie Ding, Ying Zhang","doi":"10.1007/s11704-023-2490-5","DOIUrl":null,"url":null,"abstract":"<p>Numerous studies have demonstrated that human microRNAs (miRNAs) and diseases are associated and studies on the microRNA-disease association (MDA) have been conducted. We developed a model using a low-rank approximation-based link propagation algorithm with Hilbert–Schmidt independence criterion-based multiple kernel learning (HSIC-MKL) to solve the problem of the large time commitment and cost of traditional biological experiments involving miRNAs and diseases, and improve the model effect. We constructed three kernels in miRNA and disease space and conducted kernel fusion using HSIC-MKL. Link propagation uses matrix factorization and matrix approximation to effectively reduce computation and time costs. The results of the experiment show that the approach we proposed has a good effect, and, in some respects, exceeds what existing models can do.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2490-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have demonstrated that human microRNAs (miRNAs) and diseases are associated and studies on the microRNA-disease association (MDA) have been conducted. We developed a model using a low-rank approximation-based link propagation algorithm with Hilbert–Schmidt independence criterion-based multiple kernel learning (HSIC-MKL) to solve the problem of the large time commitment and cost of traditional biological experiments involving miRNAs and diseases, and improve the model effect. We constructed three kernels in miRNA and disease space and conducted kernel fusion using HSIC-MKL. Link propagation uses matrix factorization and matrix approximation to effectively reduce computation and time costs. The results of the experiment show that the approach we proposed has a good effect, and, in some respects, exceeds what existing models can do.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.