Crossing and intersecting families of geometric graphs on point sets

IF 0.6 4区 数学 Q3 MATHEMATICS Graphs and Combinatorics Pub Date : 2024-01-25 DOI:10.1007/s00373-023-02734-9
J. L. Álvarez-Rebollar, J. Cravioto-Lagos, N. Marín, O. Solé-Pi, J. Urrutia
{"title":"Crossing and intersecting families of geometric graphs on point sets","authors":"J. L. Álvarez-Rebollar, J. Cravioto-Lagos, N. Marín, O. Solé-Pi, J. Urrutia","doi":"10.1007/s00373-023-02734-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>S</i> be a set of <i>n</i> points in the plane in general position. Two line segments connecting pairs of points of <i>S</i> <i>cross</i> if they have an interior point in common. Two vertex-disjoint geometric graphs with vertices in <i>S</i> <i>cross</i> if there are two edges, one from each graph, which cross. A set of vertex-disjoint geometric graphs with vertices in <i>S</i> is called <i>mutually crossing</i> if any two of them cross. We show that there exists a constant <i>c</i> such that from any family of <i>n</i> mutually-crossing triangles, one can always obtain a family of at least <span>\\(n^c\\)</span> mutually-crossing 2-paths (each of which is the result of deleting an edge from one of the triangles) and provide an example that implies that <i>c</i> cannot be taken to be larger than 2/3. Then, for every <i>n</i> we determine the maximum number of crossings that a Hamiltonian cycle on a set of <i>n</i> points might have, and give examples achieving this bound. Next, we construct a point set whose longest perfect matching contains no crossings. We also consider edges consisting of a horizontal and a vertical line segment joining pairs of points of <i>S</i>, which we call <i>elbows</i>, and prove that in any point set <i>S</i> there exists a family of <span>\\(\\lfloor n/4 \\rfloor \\)</span> vertex-disjoint mutually-crossing elbows. Additionally, we show a point set that admits no more than <i>n</i>/3 mutually-crossing elbows. Finally we study <i>intersecting families</i> of graphs, which are not necessarily vertex disjoint. A set of edge-disjoint graphs with vertices in <i>S</i> is called an <i>intersecting family</i> if for any two graphs in the set we can choose an edge in each of them such that they cross. We prove a conjecture by Lara and Rubio-Montiel (Acta Math Hung 15(2):301–311, 2019, https://doi.org/10.1007/s10474-018-0880-1), namely, that any set <i>S</i> of <i>n</i> points in general position admits a family of intersecting triangles with a quadratic number of elements. For points in convex position we prove that any set of 3<i>n</i> points in convex position contains a family with at least <span>\\(n^2\\)</span> intersecting triangles.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"164 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02734-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a set of n points in the plane in general position. Two line segments connecting pairs of points of S cross if they have an interior point in common. Two vertex-disjoint geometric graphs with vertices in S cross if there are two edges, one from each graph, which cross. A set of vertex-disjoint geometric graphs with vertices in S is called mutually crossing if any two of them cross. We show that there exists a constant c such that from any family of n mutually-crossing triangles, one can always obtain a family of at least \(n^c\) mutually-crossing 2-paths (each of which is the result of deleting an edge from one of the triangles) and provide an example that implies that c cannot be taken to be larger than 2/3. Then, for every n we determine the maximum number of crossings that a Hamiltonian cycle on a set of n points might have, and give examples achieving this bound. Next, we construct a point set whose longest perfect matching contains no crossings. We also consider edges consisting of a horizontal and a vertical line segment joining pairs of points of S, which we call elbows, and prove that in any point set S there exists a family of \(\lfloor n/4 \rfloor \) vertex-disjoint mutually-crossing elbows. Additionally, we show a point set that admits no more than n/3 mutually-crossing elbows. Finally we study intersecting families of graphs, which are not necessarily vertex disjoint. A set of edge-disjoint graphs with vertices in S is called an intersecting family if for any two graphs in the set we can choose an edge in each of them such that they cross. We prove a conjecture by Lara and Rubio-Montiel (Acta Math Hung 15(2):301–311, 2019, https://doi.org/10.1007/s10474-018-0880-1), namely, that any set S of n points in general position admits a family of intersecting triangles with a quadratic number of elements. For points in convex position we prove that any set of 3n points in convex position contains a family with at least \(n^2\) intersecting triangles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点集合上几何图形的交叉族和相交族
设 S 是平面上 n 个点的集合,且处于一般位置。如果连接 S 中点对的两条线段有一个共同的内点,则这两条线段相交。两个顶点相交的几何图形的顶点都在 S 中,如果有两条边(每条边都来自一个图形)相交,则这两个图形相交。如果顶点在 S 中的顶点相交的两个几何图形有两条边相交,则称这两个几何图形为互交图。我们证明存在一个常数 c,使得从任意 n 个相互交叉的三角形族中,总能得到至少一个相互交叉的 2 路径族(每个路径都是从其中一个三角形中删除一条边的结果),并举例说明 c 不能大于 2/3。然后,对于每 n 个点,我们确定一个哈密顿循环在 n 个点集合上可能具有的最大交叉次数,并举例说明如何实现这一约束。接下来,我们构建一个点集,其最长的完美匹配不包含交叉点。我们还考虑了由连接 S 的成对点的一条水平线段和一条垂直线段组成的边,我们称之为肘,并证明在任何一个点集 S 中都存在一个顶点相交的肘族。此外,我们还展示了一个点集,它允许不超过 n/3 个相互交叉的肘。最后,我们研究了不一定是顶点相交的相交图族。如果对于集合中的任意两个图形,我们都能在其中选择一条边使它们相交,那么顶点在 S 中的边相交图形集合就被称为相交族。我们证明了 Lara 和 Rubio-Montiel 的一个猜想(Acta Math Hung 15(2):301-311, 2019, https://doi.org/10.1007/s10474-018-0880-1),即在一般位置上,任何由 n 个点组成的集合 S 都包含一个元素数为二次方的相交三角形族。对于凸位置中的点,我们证明凸位置中任何 3n 个点的集合都包含一个至少有 (n^2\)个相交三角形的族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
期刊最新文献
An Efficient Algorithm to Compute the Toughness in Graphs with Bounded Treewidth Existential Closure in Line Graphs The Planar Turán Number of $$\{K_4,C_5\}$$ and $$\{K_4,C_6\}$$ On the Complexity of Local-Equitable Coloring in Claw-Free Graphs with Small Degree New Tools to Study 1-11-Representation of Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1