A disk I/O optimized system for concurrent graph processing jobs

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2024-01-22 DOI:10.1007/s11704-023-2361-0
Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Dan Feng, Peng Fang
{"title":"A disk I/O optimized system for concurrent graph processing jobs","authors":"Xianghao Xu, Fang Wang, Hong Jiang, Yongli Cheng, Dan Feng, Peng Fang","doi":"10.1007/s11704-023-2361-0","DOIUrl":null,"url":null,"abstract":"<p>In order to analyze and process the large graphs with high cost efficiency, researchers have developed a number of out-of-core graph processing systems in recent years based on just one commodity computer. On the other hand, with the rapidly growing need of analyzing graphs in the real-world, graph processing systems have to efficiently handle massive concurrent graph processing (CGP) jobs. Unfortunately, due to the inherent design for single graph processing job, existing out-of-core graph processing systems usually incur unnecessary data accesses and severe competition of I/O bandwidth when handling the CGP jobs. In this paper, we propose GraphCP, a disk I/O optimized out-of-core graph processing system that efficiently supports the processing of CGP jobs. GraphCP proposes a benefit-aware sharing execution model to share the I/O access and processing of graph data among the CGP jobs and adaptively schedule the graph data loading based on the states of vertices, which efficiently overcomes above challenges faced by existing out-of-core graph processing systems. Moreover, GraphCP adopts a dependency-based future-vertex updating model so as to reduce disk I/Os in the future iterations. In addition, GraphCP organizes the graph data with a Source-Sorted Sub-Block graph representation for better processing capacity and I/O access locality. Extensive evaluation results show that GraphCP is 20.5× and 8.9× faster than two out-of-core graph processing systems GridGraph and GraphZ, and 3.5× and 1.7× faster than two state-of-art concurrent graph processing systems Seraph and GraphSO.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"13 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2361-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to analyze and process the large graphs with high cost efficiency, researchers have developed a number of out-of-core graph processing systems in recent years based on just one commodity computer. On the other hand, with the rapidly growing need of analyzing graphs in the real-world, graph processing systems have to efficiently handle massive concurrent graph processing (CGP) jobs. Unfortunately, due to the inherent design for single graph processing job, existing out-of-core graph processing systems usually incur unnecessary data accesses and severe competition of I/O bandwidth when handling the CGP jobs. In this paper, we propose GraphCP, a disk I/O optimized out-of-core graph processing system that efficiently supports the processing of CGP jobs. GraphCP proposes a benefit-aware sharing execution model to share the I/O access and processing of graph data among the CGP jobs and adaptively schedule the graph data loading based on the states of vertices, which efficiently overcomes above challenges faced by existing out-of-core graph processing systems. Moreover, GraphCP adopts a dependency-based future-vertex updating model so as to reduce disk I/Os in the future iterations. In addition, GraphCP organizes the graph data with a Source-Sorted Sub-Block graph representation for better processing capacity and I/O access locality. Extensive evaluation results show that GraphCP is 20.5× and 8.9× faster than two out-of-core graph processing systems GridGraph and GraphZ, and 3.5× and 1.7× faster than two state-of-art concurrent graph processing systems Seraph and GraphSO.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对并发图形处理工作的磁盘 I/O 优化系统
为了以较高的成本效率分析和处理大型图,近年来,研究人员开发了许多仅基于一台商品计算机的外核图处理系统。另一方面,随着现实世界中对图分析需求的快速增长,图处理系统必须高效处理大规模并发图处理(CGP)作业。遗憾的是,由于单图处理作业的固有设计,现有的外核图处理系统在处理 CGP 作业时通常会产生不必要的数据访问和严重的 I/O 带宽竞争。在本文中,我们提出了GraphCP--一种磁盘I/O优化的核外图形处理系统,可有效支持CGP作业的处理。GraphCP提出了一种利益感知共享执行模型,在CGP作业之间共享图数据的I/O访问和处理,并根据顶点的状态自适应调度图数据加载,从而有效克服了现有核外图处理系统面临的上述挑战。此外,GraphCP 还采用了基于依赖关系的未来顶点更新模型,以减少未来迭代中的磁盘 I/O。此外,GraphCP 采用源排序子块图表示法组织图数据,以获得更好的处理能力和 I/O 访问局部性。广泛的评估结果表明,GraphCP的处理速度分别比两个外核图形处理系统GridGraph和GraphZ快20.5倍和8.9倍,比两个最先进的并发图形处理系统Seraph和GraphSO快3.5倍和1.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model SEOE: an option graph based semantically embedding method for prenatal depression detection FedTop: a constraint-loosed federated learning aggregation method against poisoning attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1