Kade J. Kearney, Timothy Blount, Emma Palmer, Rosemary Arvizu, Robert Sanford, Albert Valocchi, Charles Schaefer, Charles J. Werth
{"title":"Assessment of Cryogenic Coring to Preserve Vertical Distributions of Trichloroethylene and Reaction Products in an Aquitard","authors":"Kade J. Kearney, Timothy Blount, Emma Palmer, Rosemary Arvizu, Robert Sanford, Albert Valocchi, Charles Schaefer, Charles J. Werth","doi":"10.1111/gwmr.12628","DOIUrl":null,"url":null,"abstract":"<p>There is not a clear understanding of the extent by which naturally occurring reactions can attenuate trichloroethene (TCE) and its daughter products within low permeability zones (LPZs), and addressing this knowledge gap requires advancement of methods to accurately measure in situ volatile chemical concentrations. In this study, a soil coring method that freezes the soil in-situ (a.k.a., cryogenic coring) was utilized to measure depth-discrete distributions of TCE and its volatile reaction products through a TCE-impacted silty clay aquitard, and results were compared with those from adjacent soil cores taken using a conventional coring approach. Vertical concentration profiles of TCE, <i>cis</i>-1,2-dichloroethylene (DCE), vinyl chloride (VC), ethane, and methane were all compared between the two coring methods, and results indicate the two coring methods recovered statistically equivalent concentrations of volatiles across most depths of the fine-grained cohesive clayey soil at the study site. Biotic reductive dechlorination was the dominant TCE reaction pathway at the site; several reduced gasses that are possible markers for abiotic reduction were detected, but their concentrations and intervals of occurrence were not sufficiently consistent to indicate whether they were from abiotic TCE reduction or unrelated biological processes. Overall, cryogenic coring yielded improved recovery of sand lenses compared to conventional coring, but offered no apparent benefits for improved recovery of TCE and its volatile reaction products in the low permeability aquitard material at the site.</p>","PeriodicalId":55081,"journal":{"name":"Ground Water Monitoring and Remediation","volume":"44 2","pages":"118-128"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground Water Monitoring and Remediation","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwmr.12628","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
There is not a clear understanding of the extent by which naturally occurring reactions can attenuate trichloroethene (TCE) and its daughter products within low permeability zones (LPZs), and addressing this knowledge gap requires advancement of methods to accurately measure in situ volatile chemical concentrations. In this study, a soil coring method that freezes the soil in-situ (a.k.a., cryogenic coring) was utilized to measure depth-discrete distributions of TCE and its volatile reaction products through a TCE-impacted silty clay aquitard, and results were compared with those from adjacent soil cores taken using a conventional coring approach. Vertical concentration profiles of TCE, cis-1,2-dichloroethylene (DCE), vinyl chloride (VC), ethane, and methane were all compared between the two coring methods, and results indicate the two coring methods recovered statistically equivalent concentrations of volatiles across most depths of the fine-grained cohesive clayey soil at the study site. Biotic reductive dechlorination was the dominant TCE reaction pathway at the site; several reduced gasses that are possible markers for abiotic reduction were detected, but their concentrations and intervals of occurrence were not sufficiently consistent to indicate whether they were from abiotic TCE reduction or unrelated biological processes. Overall, cryogenic coring yielded improved recovery of sand lenses compared to conventional coring, but offered no apparent benefits for improved recovery of TCE and its volatile reaction products in the low permeability aquitard material at the site.
期刊介绍:
Since its inception in 1981, Groundwater Monitoring & Remediation® has been a resource for researchers and practitioners in the field. It is a quarterly journal that offers the best in application oriented, peer-reviewed papers together with insightful articles from the practitioner''s perspective. Each issue features papers containing cutting-edge information on treatment technology, columns by industry experts, news briefs, and equipment news. GWMR plays a unique role in advancing the practice of the groundwater monitoring and remediation field by providing forward-thinking research with practical solutions.