Sequential sentence classification in research papers using cross-domain multi-task learning

IF 1.6 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE International Journal on Digital Libraries Pub Date : 2024-01-22 DOI:10.1007/s00799-023-00392-z
Arthur Brack, Elias Entrup, Markos Stamatakis, Pascal Buschermöhle, Anett Hoppe, Ralph Ewerth
{"title":"Sequential sentence classification in research papers using cross-domain multi-task learning","authors":"Arthur Brack, Elias Entrup, Markos Stamatakis, Pascal Buschermöhle, Anett Hoppe, Ralph Ewerth","doi":"10.1007/s00799-023-00392-z","DOIUrl":null,"url":null,"abstract":"<p>The automatic semantic structuring of scientific text allows for more efficient reading of research articles and is an important indexing step for academic search engines. Sequential sentence classification is an essential structuring task and targets the categorisation of sentences based on their content and context. However, the potential of transfer learning for sentence classification across different scientific domains and text types, such as full papers and abstracts, has not yet been explored in prior work. In this paper, we present a systematic analysis of transfer learning for scientific sequential sentence classification. For this purpose, we derive seven research questions and present several contributions to address them: (1) We suggest a novel uniform deep learning architecture and multi-task learning for cross-domain sequential sentence classification in scientific text. (2) We tailor two transfer learning methods to deal with the given task, namely sequential transfer learning and multi-task learning. (3) We compare the results of the two best models using qualitative examples in a case study. (4) We provide an approach for the semi-automatic identification of semantically related classes across annotation schemes and analyse the results for four annotation schemes. The clusters and underlying semantic vectors are validated using <i>k</i>-means clustering. (5) Our comprehensive experimental results indicate that when using the proposed multi-task learning architecture, models trained on datasets from different scientific domains benefit from one another. Our approach significantly outperforms state of the art on full paper datasets while being on par for datasets consisting of abstracts.</p>","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"34 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00799-023-00392-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The automatic semantic structuring of scientific text allows for more efficient reading of research articles and is an important indexing step for academic search engines. Sequential sentence classification is an essential structuring task and targets the categorisation of sentences based on their content and context. However, the potential of transfer learning for sentence classification across different scientific domains and text types, such as full papers and abstracts, has not yet been explored in prior work. In this paper, we present a systematic analysis of transfer learning for scientific sequential sentence classification. For this purpose, we derive seven research questions and present several contributions to address them: (1) We suggest a novel uniform deep learning architecture and multi-task learning for cross-domain sequential sentence classification in scientific text. (2) We tailor two transfer learning methods to deal with the given task, namely sequential transfer learning and multi-task learning. (3) We compare the results of the two best models using qualitative examples in a case study. (4) We provide an approach for the semi-automatic identification of semantically related classes across annotation schemes and analyse the results for four annotation schemes. The clusters and underlying semantic vectors are validated using k-means clustering. (5) Our comprehensive experimental results indicate that when using the proposed multi-task learning architecture, models trained on datasets from different scientific domains benefit from one another. Our approach significantly outperforms state of the art on full paper datasets while being on par for datasets consisting of abstracts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用跨域多任务学习对研究论文中的连续句子进行分类
科学文本的自动语义结构化可提高研究文章的阅读效率,也是学术搜索引擎的重要索引步骤。顺序句子分类是一项重要的结构化任务,其目标是根据句子的内容和上下文对句子进行分类。然而,对于不同科学领域和文本类型(如论文全文和摘要)的句子分类而言,迁移学习的潜力尚未在之前的工作中得到探索。在本文中,我们系统分析了迁移学习在科学序列句子分类中的应用。为此,我们提出了七个研究问题,并针对这些问题做出了几项贡献:(1)我们提出了一种新颖的统一深度学习架构和多任务学习,用于科学文本中的跨域序列句子分类。(2) 我们定制了两种迁移学习方法来处理给定任务,即顺序迁移学习和多任务学习。(3) 通过案例研究中的定性实例,比较两种最佳模型的结果。(4) 我们提供了一种跨注释方案半自动识别语义相关类别的方法,并分析了四种注释方案的结果。聚类和基础语义向量通过 k-means 聚类进行验证。(5) 我们的综合实验结果表明,当使用所提出的多任务学习架构时,在来自不同科学领域的数据集上训练的模型可以相互受益。在完整论文数据集上,我们的方法明显优于现有技术,而在由摘要组成的数据集上,我们的方法与现有技术相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
6.70%
发文量
20
期刊介绍: The International Journal on Digital Libraries (IJDL) examines the theory and practice of acquisition definition organization management preservation and dissemination of digital information via global networking. It covers all aspects of digital libraries (DLs) from large-scale heterogeneous data and information management & access to linking and connectivity to security privacy and policies to its application use and evaluation.The scope of IJDL includes but is not limited to: The FAIR principle and the digital libraries infrastructure Findable: Information access and retrieval; semantic search; data and information exploration; information navigation; smart indexing and searching; resource discovery Accessible: visualization and digital collections; user interfaces; interfaces for handicapped users; HCI and UX in DLs; Security and privacy in DLs; multimodal access Interoperable: metadata (definition management curation integration); syntactic and semantic interoperability; linked data Reusable: reproducibility; Open Science; sustainability profitability repeatability of research results; confidentiality and privacy issues in DLs Digital Library Architectures including heterogeneous and dynamic data management; data and repositories Acquisition of digital information: authoring environments for digital objects; digitization of traditional content Digital Archiving and Preservation Digital Preservation and curation Digital archiving Web Archiving Archiving and preservation Strategies AI for Digital Libraries Machine Learning for DLs Data Mining in DLs NLP for DLs Applications of Digital Libraries Digital Humanities Open Data and their reuse Scholarly DLs (incl. bibliometrics altmetrics) Epigraphy and Paleography Digital Museums Future trends in Digital Libraries Definition of DLs in a ubiquitous digital library world Datafication of digital collections Interaction and user experience (UX) in DLs Information visualization Collection understanding Privacy and security Multimodal user interfaces Accessibility (or "Access for users with disabilities") UX studies
期刊最新文献
Methods for generation, recommendation, exploration and analysis of scholarly publications Comparing free reference extraction pipelines Digital detection of play characters’ relationships in Shakespeare’s plays: extended cross-correlation analysis of the character appearance frequencies Book recommendation system: reviewing different techniques and approaches Structured abstract generator (SAG) model: analysis of IMRAD structure of articles and its effect on extractive summarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1