Weighted and Choquet $$L^p$$ distance representation of comparative dissimilarity relations on fuzzy description profiles

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Annals of Mathematics and Artificial Intelligence Pub Date : 2024-01-24 DOI:10.1007/s10472-024-09924-y
Giulianella Coletti, Davide Petturiti, Bernadette Bouchon-Meunier
{"title":"Weighted and Choquet $$L^p$$ distance representation of comparative dissimilarity relations on fuzzy description profiles","authors":"Giulianella Coletti, Davide Petturiti, Bernadette Bouchon-Meunier","doi":"10.1007/s10472-024-09924-y","DOIUrl":null,"url":null,"abstract":"<p>We consider comparative dissimilarity relations on pairs on fuzzy description profiles, the latter providing a fuzzy set-based representation of pairs of objects. Such a relation expresses the idea of “no more dissimilar than” and is used by a decision maker when performing a case-based decision task under vague information. We first limit ourselves to those relations admitting a weighted <span>\\(\\varvec{L}^p\\)</span> distance representation, for which we provide an axiomatic characterization in case the relation is complete, transitive and defined on the entire space of pairs of fuzzy description profiles. Next, we switch to the more general class of comparative dissimilarity relations representable by a Choquet <span>\\(\\varvec{L}^p\\)</span> distance, parameterized by a completely alternating normalized capacity.</p>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"143 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10472-024-09924-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We consider comparative dissimilarity relations on pairs on fuzzy description profiles, the latter providing a fuzzy set-based representation of pairs of objects. Such a relation expresses the idea of “no more dissimilar than” and is used by a decision maker when performing a case-based decision task under vague information. We first limit ourselves to those relations admitting a weighted \(\varvec{L}^p\) distance representation, for which we provide an axiomatic characterization in case the relation is complete, transitive and defined on the entire space of pairs of fuzzy description profiles. Next, we switch to the more general class of comparative dissimilarity relations representable by a Choquet \(\varvec{L}^p\) distance, parameterized by a completely alternating normalized capacity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊描述轮廓上比较异同关系的加权和 Choquet $$L^p$$ 距离表示法
我们考虑的是模糊描述轮廓上成对对象的比较异同关系,后者提供了成对对象的基于模糊集的表示方法。这种关系表达了 "不比......更不相似 "的概念,决策者在模糊信息下执行基于案例的决策任务时会用到它。我们首先局限于那些允许加权(\varvec{L}^p\)距离表示的关系,对于这些关系,我们提供了一个公理化的表征,以防该关系是完整的、传递性的,并且定义在模糊描述轮廓对的整个空间上。接下来,我们转而讨论更一般的比较不相似性关系,这种比较不相似性关系可以用 Choquet \(\varvec{L}^p\) 距离表示,其参数是完全交替的归一化容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
3.00
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊介绍: Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning. The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors. Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.
期刊最新文献
Time-penalised trees (TpT): introducing a new tree-based data mining algorithm for time-varying covariates Conformal test martingales for hypergraphical models Costly information providing in binary contests Tumato 2.0 - a constraint-based planning approach for safe and robust robot behavior Calibration methods in imbalanced binary classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1