{"title":"Will sentiment analysis need subculture? A new data augmentation approach","authors":"Zhenhua Wang, Simin He, Guang Xu, Ming Ren","doi":"10.1002/asi.24872","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, the omnipresence of the Internet has fostered a subculture that congregates around the contemporary milieu. The subculture artfully articulates the intricacies of human feelings by ardently pursuing the allure of novelty, a fact that cannot be disregarded in the sentiment analysis. This paper aims to enrich data through the lens of subculture, to address the insufficient training data faced by sentiment analysis. To this end, a new approach of subculture-based data augmentation (SCDA) is proposed, which engenders enhanced texts for each training text by leveraging the creation of specific subcultural expression generators. The extensive experiments attest to the effectiveness and potential of SCDA. The results also shed light on the phenomenon that disparate subcultural expressions elicit varying degrees of sentiment stimulation. Moreover, an intriguing conjecture arises, suggesting the linear reversibility of certain subcultural expressions.</p>","PeriodicalId":48810,"journal":{"name":"Journal of the Association for Information Science and Technology","volume":"75 6","pages":"655-670"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association for Information Science and Technology","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asi.24872","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, the omnipresence of the Internet has fostered a subculture that congregates around the contemporary milieu. The subculture artfully articulates the intricacies of human feelings by ardently pursuing the allure of novelty, a fact that cannot be disregarded in the sentiment analysis. This paper aims to enrich data through the lens of subculture, to address the insufficient training data faced by sentiment analysis. To this end, a new approach of subculture-based data augmentation (SCDA) is proposed, which engenders enhanced texts for each training text by leveraging the creation of specific subcultural expression generators. The extensive experiments attest to the effectiveness and potential of SCDA. The results also shed light on the phenomenon that disparate subcultural expressions elicit varying degrees of sentiment stimulation. Moreover, an intriguing conjecture arises, suggesting the linear reversibility of certain subcultural expressions.
期刊介绍:
The Journal of the Association for Information Science and Technology (JASIST) is a leading international forum for peer-reviewed research in information science. For more than half a century, JASIST has provided intellectual leadership by publishing original research that focuses on the production, discovery, recording, storage, representation, retrieval, presentation, manipulation, dissemination, use, and evaluation of information and on the tools and techniques associated with these processes.
The Journal welcomes rigorous work of an empirical, experimental, ethnographic, conceptual, historical, socio-technical, policy-analytic, or critical-theoretical nature. JASIST also commissions in-depth review articles (“Advances in Information Science”) and reviews of print and other media.