Noninvasive Isocitrate Dehydrogenase 1 Status Prediction in Grade II/III Glioma Based on Magnetic Resonance Images: A Transfer Learning Strategy.

IF 1 4区 医学 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Computer Assisted Tomography Pub Date : 2024-05-01 Epub Date: 2024-01-16 DOI:10.1097/RCT.0000000000001575
Jin Zhang, Yuyao Wang, Yang Yang, Yu Han, Ying Yu, Yuchuan Hu, Shouheng Liang, Qian Sun, Danting Shang, Jiajun Bi, Guangbin Cui, Linfeng Yan
{"title":"Noninvasive Isocitrate Dehydrogenase 1 Status Prediction in Grade II/III Glioma Based on Magnetic Resonance Images: A Transfer Learning Strategy.","authors":"Jin Zhang, Yuyao Wang, Yang Yang, Yu Han, Ying Yu, Yuchuan Hu, Shouheng Liang, Qian Sun, Danting Shang, Jiajun Bi, Guangbin Cui, Linfeng Yan","doi":"10.1097/RCT.0000000000001575","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to evaluate transfer learning combined with various convolutional neural networks (TL-CNNs) in predicting isocitrate dehydrogenase 1 ( IDH1 ) status of grade II/III gliomas.</p><p><strong>Methods: </strong>Grade II/III glioma patients diagnosed at the Tangdu Hospital (August 2009 to May 2017) were retrospectively enrolled, including 54 patients with IDH1 mutant and 56 patients with wild-type IDH1 . Convolutional neural networks, AlexNet, GoogLeNet, ResNet, and VGGNet were fine-tuned with T2-weighted imaging (T2WI), fluid attenuation inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (T1CE) images. The single-modal networks were integrated with averaged sigmoid probabilities, logistic regression, and support vector machine. FLAIR-T1CE-fusion (FC-fusion), T2WI-T1CE-fusion (TC-fusion), and FLAIR-T2WI-T1CE-fusion (FTC-fusion) were used for fine-tuning TL-CNNs.</p><p><strong>Results: </strong>IDH1 -mutant prediction accuracies using AlexNet, GoogLeNet, ResNet, and VGGNet achieved 70.0% (AUC = 0.660), 65.0% (AUC = 0.600), 70.0% (AUC = 0.700), and 80.0% (AUC = 0.730) for T2WI images, 70.0% (AUC = 0.660), 70.0% (AUC = 0.620), 70.0% (AUC = 0.710), and 80.0% (AUC = 0.720) for FLAIR images, and 73.7% (AUC = 0.744), 73.7% (AUC = 0.656), 73.7% (AUC = 0.633), and 73.7% (AUC = 0.700) for T1CE images, respectively. The highest AUC (0.800) was achieved using VGGNet and FC-fusion images.</p><p><strong>Conclusions: </strong>TL-CNNs (especially VGGNet) had a potential predictive value for IDH1 -mutant status of grade II/III gliomas.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":"449-458"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001575","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim of this study was to evaluate transfer learning combined with various convolutional neural networks (TL-CNNs) in predicting isocitrate dehydrogenase 1 ( IDH1 ) status of grade II/III gliomas.

Methods: Grade II/III glioma patients diagnosed at the Tangdu Hospital (August 2009 to May 2017) were retrospectively enrolled, including 54 patients with IDH1 mutant and 56 patients with wild-type IDH1 . Convolutional neural networks, AlexNet, GoogLeNet, ResNet, and VGGNet were fine-tuned with T2-weighted imaging (T2WI), fluid attenuation inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (T1CE) images. The single-modal networks were integrated with averaged sigmoid probabilities, logistic regression, and support vector machine. FLAIR-T1CE-fusion (FC-fusion), T2WI-T1CE-fusion (TC-fusion), and FLAIR-T2WI-T1CE-fusion (FTC-fusion) were used for fine-tuning TL-CNNs.

Results: IDH1 -mutant prediction accuracies using AlexNet, GoogLeNet, ResNet, and VGGNet achieved 70.0% (AUC = 0.660), 65.0% (AUC = 0.600), 70.0% (AUC = 0.700), and 80.0% (AUC = 0.730) for T2WI images, 70.0% (AUC = 0.660), 70.0% (AUC = 0.620), 70.0% (AUC = 0.710), and 80.0% (AUC = 0.720) for FLAIR images, and 73.7% (AUC = 0.744), 73.7% (AUC = 0.656), 73.7% (AUC = 0.633), and 73.7% (AUC = 0.700) for T1CE images, respectively. The highest AUC (0.800) was achieved using VGGNet and FC-fusion images.

Conclusions: TL-CNNs (especially VGGNet) had a potential predictive value for IDH1 -mutant status of grade II/III gliomas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁共振图像的 II/III 级胶质瘤中异柠檬酸脱氢酶 1 状态的无创预测:迁移学习策略
研究目的本研究旨在评估迁移学习结合各种卷积神经网络(TL-CNNs)预测II/III级胶质瘤的异柠檬酸脱氢酶1(IDH1)状态:回顾性纳入唐都医院确诊的II/III级胶质瘤患者(2009年8月至2017年5月),包括54例IDH1突变型患者和56例IDH1野生型患者。利用T2加权成像(T2WI)、流体衰减反转恢复(FLAIR)和对比增强T1加权成像(T1CE)图像对卷积神经网络、AlexNet、GoogLeNet、ResNet和VGGNet进行了微调。利用平均sigmoid概率、逻辑回归和支持向量机整合了单模态网络。FLAIR-T1CE-融合(FC-融合)、T2WI-T1CE-融合(TC-融合)和FLAIR-T2WI-T1CE-融合(FTC-融合)用于微调TL-CNNs:使用 AlexNet、GoogLeNet、ResNet 和 VGGNet 预测 IDH1 突变体的准确率分别为 70.0%(AUC = 0.660)、65.0%(AUC = 0.600)、70.0%(AUC = 0.700)和 80.0%(AUC = 0.730),T2WI 图像为 70.0%(AUC = 0.660)、70.0%(AUC = 0.620)、70.0%(AUC = 0.710)和 80.0%(AUC = 0.720),T1CE 图像分别为 73.7%(AUC = 0.744)、73.7%(AUC = 0.656)、73.7%(AUC = 0.633)和 73.7%(AUC = 0.700)。VGGNet 和 FC 融合图像的 AUC 最高(0.800):结论:TL-CNN(尤其是 VGGNet)对 II/III 级胶质瘤的 IDH1 突变状态具有潜在的预测价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
230
审稿时长
4-8 weeks
期刊介绍: The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).
期刊最新文献
Evaluating the Efficacy of Deep Learning Reconstruction in Reducing Radiation Dose for Computer-Aided Volumetry for Liver Tumor: A Phantom Study. Improving Image Quality and Visualization of Hepatocellular Carcinoma in Arterial Phase Imaging Using Contrast Enhancement-Boost Technique. Phosphaturic Mesenchymal Tumor and Tumor-Induced Osteomalacia: A Report of 5 Cases, Including 2 Skull Base Cases With Arterial Spin Label Perfusion. Application of a Deep Learning-Based Contrast-Boosting Algorithm to Low-Dose Computed Tomography Pulmonary Angiography With Reduced Iodine Load. Contrast-Enhanced Digital Mammography for the Diagnosis and Determination of Extent of Disease in Invasive Lobular Carcinoma: Our Experience and Literature Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1