Highlights of the Recent Patent Literature: Continuous Chemistry in the Pharmaceutical Industry

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2024-01-26 DOI:10.1021/acs.oprd.3c00438
David L. Hughes*, 
{"title":"Highlights of the Recent Patent Literature: Continuous Chemistry in the Pharmaceutical Industry","authors":"David L. Hughes*,&nbsp;","doi":"10.1021/acs.oprd.3c00438","DOIUrl":null,"url":null,"abstract":"<p >Flow chemistry reactions and continuous separations have become established processing modalities in the pharmaceutical industry from early development to manufacturing. The current review highlights patents and patent applications from 2019 to 2023 wherein no accompanying journal article has been published, with a focus on examples that enable chemistries that are difficult or unsafe to scale in batch mode or provide significant process intensification.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 5","pages":"1272–1287"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.3c00438","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Flow chemistry reactions and continuous separations have become established processing modalities in the pharmaceutical industry from early development to manufacturing. The current review highlights patents and patent applications from 2019 to 2023 wherein no accompanying journal article has been published, with a focus on examples that enable chemistries that are difficult or unsafe to scale in batch mode or provide significant process intensification.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近期专利文献集锦:制药业中的连续化学
流动化学反应和连续分离已成为制药行业从早期开发到生产的成熟加工模式。本综述重点介绍了 2019 年至 2023 年期间未发表过相关期刊文章的专利和专利申请,重点关注那些能够实现批量模式下难以扩展或不安全的化学反应,或提供显著工艺强化的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Application of an Interdisciplinary Approach to Form Selection in Drug Development A Confined Impinging Jet Reactor for High-Throughput Continuous Flow Mononitration of Salicylic Acid Applicability of Fluidized Bed Crystallization for Separation of Enantiomers Forming Needle-Shaped Crystals Process Analytical Technology for Real-Time Monitoring of Pharmaceutical Bioconjugation Reactions Quality Control for Incoming Raw Materials Beyond Identity and Purity: Case Studies from Recent Merck API Manufacturing Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1