Thermodynamic costs of temperature stabilization in logically irreversible computation

IF 4.3 3区 工程技术 Q1 MECHANICS Journal of Non-Equilibrium Thermodynamics Pub Date : 2024-01-26 DOI:10.1515/jnet-2023-0099
Shu-Nan Li, Bing-Yang Cao
{"title":"Thermodynamic costs of temperature stabilization in logically irreversible computation","authors":"Shu-Nan Li, Bing-Yang Cao","doi":"10.1515/jnet-2023-0099","DOIUrl":null,"url":null,"abstract":"In recent years, great efforts are devoted to reducing the work cost of the bit operation, but it is still unclear whether these efforts are sufficient for resolving the temperature stabilization problem in computation. By combining information thermodynamics and a generalized constitutive model which can describe Fourier heat conduction as well as non-Fourier heat transport with nonlocal effects, we here unveil two types of the thermodynamic costs in the temperature stabilization problem. Each type imposes an upper bound on the amount of bits operated per unit time per unit volume, which will eventually limit the speed of the bit operation. The first type arises from the first and second laws of thermodynamics, which is independent of the boundary condition and can be circumvented in Fourier heat conduction. The other type is traceable to the third law of thermodynamics, which will vary with the boundary condition and is ineluctable in Fourier heat conduction. These thermodynamic costs show that reducing the work cost of the bit operation is insufficient for resolving the temperature stabilization problem in computation unless the work cost vanishes.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0099","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, great efforts are devoted to reducing the work cost of the bit operation, but it is still unclear whether these efforts are sufficient for resolving the temperature stabilization problem in computation. By combining information thermodynamics and a generalized constitutive model which can describe Fourier heat conduction as well as non-Fourier heat transport with nonlocal effects, we here unveil two types of the thermodynamic costs in the temperature stabilization problem. Each type imposes an upper bound on the amount of bits operated per unit time per unit volume, which will eventually limit the speed of the bit operation. The first type arises from the first and second laws of thermodynamics, which is independent of the boundary condition and can be circumvented in Fourier heat conduction. The other type is traceable to the third law of thermodynamics, which will vary with the boundary condition and is ineluctable in Fourier heat conduction. These thermodynamic costs show that reducing the work cost of the bit operation is insufficient for resolving the temperature stabilization problem in computation unless the work cost vanishes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逻辑不可逆计算中温度稳定的热力学成本
近年来,人们致力于降低位操作的功耗,但仍不清楚这些努力是否足以解决计算中的温度稳定问题。通过将信息热力学与可描述傅里叶热传导以及具有非局部效应的非傅里叶热传输的广义构成模型相结合,我们在此揭示了温度稳定问题中的两种热力学成本。每种类型都会对单位时间、单位体积内的比特操作量施加上限,最终限制比特操作的速度。第一类产生于热力学第一和第二定律,与边界条件无关,可在傅立叶热传导中规避。另一类可追溯到热力学第三定律,它会随着边界条件的变化而变化,在傅立叶热传导中是不可避免的。这些热力学代价表明,降低位操作的功耗不足以解决计算中的温度稳定问题,除非功耗消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
期刊最新文献
Stochastic dissipative Euler’s equations for a free body Performance prediction and manipulation strategy of a hybrid system based on tubular solid oxide fuel cell and annular thermoelectric generator Efficient ecological function analysis and multi-objective optimizations for an endoreversible simple air refrigerator cycle Novel irreversibility modeling of non-homogeneous charged gas flow by solving Maxwell–Boltzmann PDEs system: irreversibility analysis for multi-component plasma Thermodynamics and dynamic stability: extended theories of heat conduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1