Lichu Liu, Na Zhao, Kuangyang Yang, Honghong Liao, Xiaofang Liu, Ying Wu, Yan Wang, Xiao Peng, Yuanyan Wu
{"title":"Proteomic Analysis of Staphylococcus aureus Treated with ShangKeHuangShui.","authors":"Lichu Liu, Na Zhao, Kuangyang Yang, Honghong Liao, Xiaofang Liu, Ying Wu, Yan Wang, Xiao Peng, Yuanyan Wu","doi":"10.1248/bpb.b23-00471","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus (SAU) stands as the prevailing pathogen in post-traumatic infections, with the emergence of antibiotic resistance presenting formidable treatment hurdles. The pressing need is to explore novel antibiotics to address this challenge. ShangKeHuangShui (SKHS), a patented traditional Chinese herbal formula, has gained widespread use in averting post-traumatic infections, but its biological effects remain incomplete understanding. This study's primary objective was to delve into the antibacterial properties, potential antibacterial compounds within SKHS, and their associated molecular targets. In vitro SKHS antibacterial assays demonstrated that the minimum inhibitory concentration (MIC) was 8.625 mg/mL and the minimum bactericide concentration (MBC) was 17.25 mg/mL. Proteomic analysis based on tandem mass tag (TMT) showed significant changes in the expression level of 246 proteins in SKHS treated group compared to control group, with 79 proteins upregulated and 167 proteins downregulated (>1.5-fold, p < 0.05). Subsequently, thirteen target proteins related to various biological processes and multiple metabolic pathways were selected to conduct parallel reaction monitoring (PRM) and molecular docking screen. In protein tyrosine phosphatase PtpA (ptpA) docking screening, phellodendrine and obacunone can bind to ptpA with the binding energy of - 8.4 and - 8.3 kcal/mol, respectively. This suggests their potential impact on antibacterial activity by modulating the two-component system of SAU. The discovery lays a groundwork for future research endeavors for exploring new antibacterial candidates and elucidating specific active chemical components within SKHS that match target proteins. Further investigations are imperative to unveil the biological effects of these monomers and their potential synergistic actions.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 1","pages":"292-302"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b23-00471","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus (SAU) stands as the prevailing pathogen in post-traumatic infections, with the emergence of antibiotic resistance presenting formidable treatment hurdles. The pressing need is to explore novel antibiotics to address this challenge. ShangKeHuangShui (SKHS), a patented traditional Chinese herbal formula, has gained widespread use in averting post-traumatic infections, but its biological effects remain incomplete understanding. This study's primary objective was to delve into the antibacterial properties, potential antibacterial compounds within SKHS, and their associated molecular targets. In vitro SKHS antibacterial assays demonstrated that the minimum inhibitory concentration (MIC) was 8.625 mg/mL and the minimum bactericide concentration (MBC) was 17.25 mg/mL. Proteomic analysis based on tandem mass tag (TMT) showed significant changes in the expression level of 246 proteins in SKHS treated group compared to control group, with 79 proteins upregulated and 167 proteins downregulated (>1.5-fold, p < 0.05). Subsequently, thirteen target proteins related to various biological processes and multiple metabolic pathways were selected to conduct parallel reaction monitoring (PRM) and molecular docking screen. In protein tyrosine phosphatase PtpA (ptpA) docking screening, phellodendrine and obacunone can bind to ptpA with the binding energy of - 8.4 and - 8.3 kcal/mol, respectively. This suggests their potential impact on antibacterial activity by modulating the two-component system of SAU. The discovery lays a groundwork for future research endeavors for exploring new antibacterial candidates and elucidating specific active chemical components within SKHS that match target proteins. Further investigations are imperative to unveil the biological effects of these monomers and their potential synergistic actions.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.