The Mechanism of 5-Fluorouracil-Induced Hyperpigmentation in HRM-2 Hairless Mice: Focus on the Increase of Blood Vessels.

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY Biological & pharmaceutical bulletin Pub Date : 2024-01-01 DOI:10.1248/bpb.b23-00584
Atsuo Fujito, Shota Tanaka, Keiichi Hiramoto, Ning Ma, Kazuya Ooi
{"title":"The Mechanism of 5-Fluorouracil-Induced Hyperpigmentation in HRM-2 Hairless Mice: Focus on the Increase of Blood Vessels.","authors":"Atsuo Fujito, Shota Tanaka, Keiichi Hiramoto, Ning Ma, Kazuya Ooi","doi":"10.1248/bpb.b23-00584","DOIUrl":null,"url":null,"abstract":"<p><p>5-Fluorouracil (5-FU), an effective chemotherapeutic agent for many solid tumors, has long been reported to cause pigmentation in patients treated intravenously, which occurs with increasing frequency of administration and decreases the QOL of the patients. Although melanin accumulation is thought to be the cause, the mechanism of pigmentation induced by 5-FU administration remains unclear, and there is no effective treatment for this problem. In this study, we investigated the mechanism of pigmentation induced by continuous 5-FU administration in 9-week-old male HRM-2 hairless mice for 8 weeks by focusing on the blood vessels for basic verification. In the auricular skin of 5-FU-administered mice, hyperpigmentation caused by melanin accumulation was observed macroscopically and by Fontana-Masson Staining. In addition, the expression of tyrosinase, melanin synthase, and blood vessel markers in the auricular skin was increased by 5-FU-administration in mice auricular skin. Other anticancer agents, cytarabine (Ara-C) and irinotecan (CPT-11), were also administered, and the differences between them and 5-FU were investigated; these changes were not observed in the auricles of these mice. These results suggest that tyrosinase is associated with 5-FU-induced melanin production and that an increase in blood vessels may be involved. Furthermore, pigmentation with melanin accumulation in the basal epidermal layer is a characteristic finding of 5-FU compared with Ara-C and CPT-11. In conclusion, this study indicates that 5-FU causes hyperpigmentation by melanin accumulation in a characteristic manner, including an increase in blood vessels.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 1","pages":"311-317"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b23-00584","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

5-Fluorouracil (5-FU), an effective chemotherapeutic agent for many solid tumors, has long been reported to cause pigmentation in patients treated intravenously, which occurs with increasing frequency of administration and decreases the QOL of the patients. Although melanin accumulation is thought to be the cause, the mechanism of pigmentation induced by 5-FU administration remains unclear, and there is no effective treatment for this problem. In this study, we investigated the mechanism of pigmentation induced by continuous 5-FU administration in 9-week-old male HRM-2 hairless mice for 8 weeks by focusing on the blood vessels for basic verification. In the auricular skin of 5-FU-administered mice, hyperpigmentation caused by melanin accumulation was observed macroscopically and by Fontana-Masson Staining. In addition, the expression of tyrosinase, melanin synthase, and blood vessel markers in the auricular skin was increased by 5-FU-administration in mice auricular skin. Other anticancer agents, cytarabine (Ara-C) and irinotecan (CPT-11), were also administered, and the differences between them and 5-FU were investigated; these changes were not observed in the auricles of these mice. These results suggest that tyrosinase is associated with 5-FU-induced melanin production and that an increase in blood vessels may be involved. Furthermore, pigmentation with melanin accumulation in the basal epidermal layer is a characteristic finding of 5-FU compared with Ara-C and CPT-11. In conclusion, this study indicates that 5-FU causes hyperpigmentation by melanin accumulation in a characteristic manner, including an increase in blood vessels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5-氟尿嘧啶诱导 HRM-2 无毛小鼠色素沉着过度的机制:关注血管的增加。
5-氟尿嘧啶(5-FU)是一种治疗多种实体瘤的有效化疗药物,但长期以来一直有报告称,静脉注射该药物的患者会出现色素沉着,随着用药次数的增加,色素沉着的发生率也会增加,并降低患者的生活质量。虽然黑色素蓄积被认为是导致色素沉着的原因,但5-FU用药诱发色素沉着的机制仍不清楚,目前也没有有效的治疗方法。在本研究中,我们通过对血管进行基本验证,研究了连续给 9 周龄雄性 HRM-2 无毛小鼠服用 5-FU 8 周后诱发色素沉着的机制。在服用了5-FU的小鼠耳廓皮肤上,用Fontana-Masson染色法从宏观上观察到了由黑色素蓄积引起的色素沉着。此外,给小鼠耳廓皮肤注射 5-FU 后,耳廓皮肤中酪氨酸酶、黑色素合成酶和血管标记物的表达均有所增加。此外,还使用了其他抗癌药物,如阿糖胞苷(Ara-C)和伊立替康(CPT-11),并研究了它们与 5-FU 之间的差异;在这些小鼠的耳廓中没有观察到这些变化。这些结果表明,酪氨酸酶与 5-FU 诱导的黑色素生成有关,血管的增加可能与此有关。此外,与 Ara-C 和 CPT-11 相比,色素沉着和表皮基底层黑色素积聚是 5-FU 的特征性发现。总之,这项研究表明,5-FU 会以特有的方式导致黑色素蓄积,包括血管增加,从而引起色素沉着。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.00%
发文量
247
审稿时长
2 months
期刊介绍: Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012. The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.
期刊最新文献
Epigallocatechin-3-gallate Alleviates Ethanol-Induced Endothelia Cells Injury Partly through Alteration of NF-κB Translocation and Activation of the Nrf2 Signaling Pathway. Effect of Chronic Ethanol Consumption on Exogenous Glucose Metabolism in Rats Using [1-13C], [2-13C], and [3-13C]glucose Breath Tests. Protective Effect of Pemafibrate Treatment against Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats. Comparing the Efficacy of Fosnetupitant, an NK1 Receptor Antagonist in CDDP-Based Regimens, with That of Fosaprepitant and Aprepitant: A Retrospective Observational Study. Loureirin A Promotes Cell Differentiation and Suppresses Migration and Invasion of Melanoma Cells via WNT and AKT/mTOR Signaling Pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1