Waste to energy, indispensable cornerstone for circular economy: A mini-review.

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Waste Management & Research Pub Date : 2025-01-01 Epub Date: 2024-01-29 DOI:10.1177/0734242X241227376
Paul H Brunner, Leo S Morf
{"title":"Waste to energy, indispensable cornerstone for circular economy: A mini-review.","authors":"Paul H Brunner, Leo S Morf","doi":"10.1177/0734242X241227376","DOIUrl":null,"url":null,"abstract":"<p><p>This mini-review aims at proving that waste-to-energy (WtE) is an essential cornerstone for circular economy (CE). Based on literature, the history of thermal waste treatment over the last 150 years is investigated, from open burning to WtE with resource recovery and final sink function. The results show that in the past incineration solved the issues it was designed for but often created new and sometimes even worse problems: The introduction of incineration in the 19th century improved urban sanitation, decreased waste volume and prolonged operational life of landfills. But it also polluted the environment, triggering an unprecedented scientific and engineering effort of all stakeholders. Today, WtE is one of the best investigated and optimized technologies in waste management. It enables the recovery of energy as heat and electric power and facilitates the 'cleaning' of cycles by the destruction of hazardous organic substances. Recent developments in resource recovery from WtE residues allow to recycle metals and, in the case of sewage sludge, even phosphorus by thermal recycling. Combined with carbon capture and storage technology, WtE stands for a quantifiable contribution to greenhouse gas reduction. Today, WtE is indispensable to reach the goals of CE, namely recycling of energy and materials, supplying safe final sinks for persistent organic substances and minimizing the need for sinks for hazardous inorganic substances.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"26-38"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11690026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241227376","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This mini-review aims at proving that waste-to-energy (WtE) is an essential cornerstone for circular economy (CE). Based on literature, the history of thermal waste treatment over the last 150 years is investigated, from open burning to WtE with resource recovery and final sink function. The results show that in the past incineration solved the issues it was designed for but often created new and sometimes even worse problems: The introduction of incineration in the 19th century improved urban sanitation, decreased waste volume and prolonged operational life of landfills. But it also polluted the environment, triggering an unprecedented scientific and engineering effort of all stakeholders. Today, WtE is one of the best investigated and optimized technologies in waste management. It enables the recovery of energy as heat and electric power and facilitates the 'cleaning' of cycles by the destruction of hazardous organic substances. Recent developments in resource recovery from WtE residues allow to recycle metals and, in the case of sewage sludge, even phosphorus by thermal recycling. Combined with carbon capture and storage technology, WtE stands for a quantifiable contribution to greenhouse gas reduction. Today, WtE is indispensable to reach the goals of CE, namely recycling of energy and materials, supplying safe final sinks for persistent organic substances and minimizing the need for sinks for hazardous inorganic substances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废物变能源,循环经济不可或缺的基石:小型回顾。
本微型综述旨在证明废物变能源(WtE)是循环经济(CE)的重要基石。在文献的基础上,研究了过去 150 年来热废物处理的历史,从露天焚烧到具有资源回收和最终汇功能的 WtE。研究结果表明,过去的焚烧法解决了设计时所针对的问题,但往往会产生新的问题,有时甚至是更严重的问题:19 世纪引入的焚烧技术改善了城市卫生状况,减少了垃圾量,延长了垃圾填埋场的运行寿命。但同时也污染了环境,引发了所有利益相关方前所未有的科学和工程努力。如今,WtE 已成为废物管理领域研究和优化得最好的技术之一。它能够回收热能和电能,并通过销毁有害有机物促进循环的 "清洁"。从 WtE 剩余物中进行资源回收的最新进展使金属得以回收利用,在污水污泥的情况下,甚至可以通过热回收利用来回收磷。结合碳捕集与封存技术,WtE 对减少温室气体排放做出了可量化的贡献。如今,要实现 CE 目标,即能源和材料的循环利用、为持久性有机物质提供安全的最终汇以及最大限度地减少对有害无机物质汇的需求,WtE 是不可或缺的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
期刊最新文献
Implementing biowaste source segregation for sustainable decentralized composting schemes in Tiassalé, southern Côte d'Ivoire. Towards more sustainable oceans: A review of the pressing challenges posed by marine plastic litter. Pollution risk assessment in sub-basins of an open dump using drones and geographic information systems. Municipal solid waste management instruments that influence the use of the refuse as fuel in developing countries: A critical review. Solid waste generation prediction model framework using socioeconomic and demographic factors with real-time MSW collection data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1