Production of Plant Proteins and Peptides with Pharmacological Potential.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology Advances in biochemical engineering/biotechnology Pub Date : 2024-01-01 DOI:10.1007/10_2023_246
Jutta Ludwig-Müller
{"title":"Production of Plant Proteins and Peptides with Pharmacological Potential.","authors":"Jutta Ludwig-Müller","doi":"10.1007/10_2023_246","DOIUrl":null,"url":null,"abstract":"<p><p>The use of plant proteins or peptides in biotechnology is based on their identification as possessing bioactive potential in plants. This is usually the case for antimicrobial, fungicidal, or insecticidal components of the plant's defense system. They function in addition to a large number of specialized metabolites. Such proteins can be classified according to their sequence, length, and structure, and this has been tried to describe for a few examples here. Even though such proteins or peptides can be induced during plant-pathogen interaction, they are still present in rather small amounts that make the system not suitable for the production in large-scale systems. Therefore, a suitable type of host needs to be identified, such as cell cultures or adult plants. Bioinformatic predictions can also be used to add to the number of bioactive sequences. Some problems that can occur in production by the plant system itself will be discussed, such as choice of promoter for gene expression, posttranslational protein modifications, protein stability, secretion of proteins, or induction by elicitors. Finally, the plant needs to be set up by biotechnological or molecular methods for production, and the product needs to be enriched or purified. In some cases of small peptides, a direct chemical synthesis might be feasible. Altogether, the process needs to be considered marketable.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"51-81"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2023_246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The use of plant proteins or peptides in biotechnology is based on their identification as possessing bioactive potential in plants. This is usually the case for antimicrobial, fungicidal, or insecticidal components of the plant's defense system. They function in addition to a large number of specialized metabolites. Such proteins can be classified according to their sequence, length, and structure, and this has been tried to describe for a few examples here. Even though such proteins or peptides can be induced during plant-pathogen interaction, they are still present in rather small amounts that make the system not suitable for the production in large-scale systems. Therefore, a suitable type of host needs to be identified, such as cell cultures or adult plants. Bioinformatic predictions can also be used to add to the number of bioactive sequences. Some problems that can occur in production by the plant system itself will be discussed, such as choice of promoter for gene expression, posttranslational protein modifications, protein stability, secretion of proteins, or induction by elicitors. Finally, the plant needs to be set up by biotechnological or molecular methods for production, and the product needs to be enriched or purified. In some cases of small peptides, a direct chemical synthesis might be feasible. Altogether, the process needs to be considered marketable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生产具有药用潜力的植物蛋白和肽。
在生物技术中使用植物蛋白或肽是基于它们被鉴定为具有植物生物活性潜力。这通常是指植物防御系统中的抗菌、杀菌或杀虫成分。除了大量专门的代谢物外,它们还发挥着其他作用。此类蛋白质可根据其序列、长度和结构进行分类,在此仅举几例加以说明。尽管在植物与病原体相互作用的过程中可以诱导这类蛋白质或肽,但它们的含量仍然很少,因此不适合在大规模系统中生产。因此,需要确定合适的宿主类型,如细胞培养物或成年植物。生物信息学预测也可用于增加生物活性序列的数量。还将讨论植物系统本身在生产过程中可能出现的一些问题,如基因表达启动子的选择、蛋白质翻译后修饰、蛋白质稳定性、蛋白质分泌或诱导剂诱导等。最后,需要通过生物技术或分子方法建立植物生产系统,并对产品进行富集或纯化。在某些小肽的情况下,直接化学合成也许是可行的。总之,该工艺需要被认为是适销对路的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
期刊最新文献
Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion. Production of Novel Energy Gases in Bioprocesses Using Undefined Mixed Cultures. Food and Forest Industry Waste Reuse Using Mixed Microflora. Introduction to the Use of Microbial Communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1