{"title":"Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications.","authors":"Saleh Hadi Alharbi","doi":"10.1177/20420188231222367","DOIUrl":null,"url":null,"abstract":"<p><p>Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have emerged as promising therapeutic agents with potent anti-inflammatory properties and diverse clinical implications. This in-depth review article explores the mechanisms behind the anti-inflammatory actions of GLP-1RAs and assesses their prospective applicability in a wide range of disease scenarios. The current review establishes the significance of comprehending the anti-inflammatory role of GLP-1RAs and identifies pertinent research gaps. A concise overview of inflammation and its clinical consequences underscores the critical need for effective anti-inflammatory interventions. Subsequently, the article elucidates the intricate mechanisms through which GLP-1RAs modulate immune cell signaling and regulate the nuclear factor-kappa B (NF-κB) pathway. Detailed discussions encompass their impact on inflammatory responses, cytokine production, and attenuation of oxidative stress. The exposition is substantiated by a collection of pertinent examples and an extensive array of references from both preclinical and clinical investigations. The historical trajectory of GLP-1RA drugs, including exenatide, lixisenatide, liraglutide, and semaglutide, is traced to delineate their development as therapeutic agents. Moreover, the review emphasizes the therapeutic potential of GLP-1RAs in specific disease contexts like type 2 diabetes, a neurodegenerative disorder, and inflammatory bowel disease (IBD), shedding light on their anti-inflammatory effects through rigorous examination of preclinical and clinical studies. The article also provides an outlook on future perspectives for GLP-1RAs, encompassing the domains of diabetes, neurodegenerative diseases, and IBD. In conclusion, GLP-1RAs exhibit substantial anti-inflammatory effects, rendering them promising therapeutic agents with broad clinical implications. They are very useful in a wide variety of diseases because they regulate immunological responses, block NF-κB activation, and decrease production of pro-inflammatory cytokines. Ongoing research endeavors aim to optimize their therapeutic use, delineate patient-specific treatment paradigms, and explore novel therapeutic applications. GLP-1RAs represent a significant breakthrough in anti-inflammatory therapy, offering novel treatment options, and improved patient outcomes.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20420188231222367","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have emerged as promising therapeutic agents with potent anti-inflammatory properties and diverse clinical implications. This in-depth review article explores the mechanisms behind the anti-inflammatory actions of GLP-1RAs and assesses their prospective applicability in a wide range of disease scenarios. The current review establishes the significance of comprehending the anti-inflammatory role of GLP-1RAs and identifies pertinent research gaps. A concise overview of inflammation and its clinical consequences underscores the critical need for effective anti-inflammatory interventions. Subsequently, the article elucidates the intricate mechanisms through which GLP-1RAs modulate immune cell signaling and regulate the nuclear factor-kappa B (NF-κB) pathway. Detailed discussions encompass their impact on inflammatory responses, cytokine production, and attenuation of oxidative stress. The exposition is substantiated by a collection of pertinent examples and an extensive array of references from both preclinical and clinical investigations. The historical trajectory of GLP-1RA drugs, including exenatide, lixisenatide, liraglutide, and semaglutide, is traced to delineate their development as therapeutic agents. Moreover, the review emphasizes the therapeutic potential of GLP-1RAs in specific disease contexts like type 2 diabetes, a neurodegenerative disorder, and inflammatory bowel disease (IBD), shedding light on their anti-inflammatory effects through rigorous examination of preclinical and clinical studies. The article also provides an outlook on future perspectives for GLP-1RAs, encompassing the domains of diabetes, neurodegenerative diseases, and IBD. In conclusion, GLP-1RAs exhibit substantial anti-inflammatory effects, rendering them promising therapeutic agents with broad clinical implications. They are very useful in a wide variety of diseases because they regulate immunological responses, block NF-κB activation, and decrease production of pro-inflammatory cytokines. Ongoing research endeavors aim to optimize their therapeutic use, delineate patient-specific treatment paradigms, and explore novel therapeutic applications. GLP-1RAs represent a significant breakthrough in anti-inflammatory therapy, offering novel treatment options, and improved patient outcomes.