VapC10 toxin of the legume symbiont Sinorhizobium meliloti targets tRNASer and controls intracellular lifestyle

Camille Syska, Aurélie Kiers, Corinne Rancurel, Marc Bailly-Bechet, Justine Lipuma, Geneviève Alloing, Isabelle Garcia, Laurence Dupont
{"title":"VapC10 toxin of the legume symbiont Sinorhizobium meliloti targets tRNASer and controls intracellular lifestyle","authors":"Camille Syska, Aurélie Kiers, Corinne Rancurel, Marc Bailly-Bechet, Justine Lipuma, Geneviève Alloing, Isabelle Garcia, Laurence Dupont","doi":"10.1093/ismejo/wrae015","DOIUrl":null,"url":null,"abstract":"The soil bacterium Sinorhizobium meliloti can establish a nitrogen fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Whereas Toxin-Antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a MORE RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The soil bacterium Sinorhizobium meliloti can establish a nitrogen fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Whereas Toxin-Antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a MORE RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
豆科植物共生体瓜萎镰刀菌(Sinorhizobium meliloti)的 VapC10毒素靶向 tRNASer 并控制细胞内的生活方式
土壤中的美乐藻根瘤菌(Sinorhizobium meliloti)能与模式豆科植物美智子(Medicago truncatula)建立固氮共生关系。根瘤菌诱导形成一种称为 "结节 "的特化根器官,并在其中分化成类菌体,将大气中的氮还原成氨。人们对结核开始衰老和细菌在受感染植物细胞内存活的机制知之甚少。虽然毒素-抗毒素(TA)系统已被证明能促进人类致病菌在宿主细胞内的生存,但它们在共生细菌中的作用却很少被研究。S. meliloti编码多种TA系统,主要属于VapBC家族。在这里,我们通过多学科方法介绍了 S. meliloti 的 VapBC10 TA 系统的功能特征。在进行 MORE RNA-seq 分析后,我们证明 VapC10 毒素是一种 RNase,能裂解两个 tRNASer 的反密码子环。 随后,我们利用生物信息学方法预测了 VapC10 在类杆菌中的靶标。这项分析表明,毒素激活会引发特定蛋白质组的重编程,从而限制固氮能力和类固氮微生物的生存能力。因此,vapC10突变体会诱导结核延迟衰老,从而提高类菌体的存活率。VapBC10 TA系统可能有助于S. meliloti适应共生生活方式,以应对植物的氮状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pathogen non-planktonic phases within the urinary tract impact early infection and resistance evolution Hidden syndinian and perkinsid infections in dinoflagellate hosts revealed by single-cell transcriptomics Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes Niche breadth specialisation impacts ecological and evolutionary adaptation following environmental change Biofilms inactivate the free-living stage of Batrachochytrium dendrobatidis, the most destructive pathogen for vertebrate diversity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1