Macrophytes for Utilization in Constructed Wetland as Efficient Species for Phytoremediation of Emerging Contaminants from Wastewater

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-26 DOI:10.1007/s13157-024-01770-2
Priyanka Singh, Gurudatta Singh, Anubhuti Singh, Virendra Kumar Mishra, Reetika Shukla
{"title":"Macrophytes for Utilization in Constructed Wetland as Efficient Species for Phytoremediation of Emerging Contaminants from Wastewater","authors":"Priyanka Singh, Gurudatta Singh, Anubhuti Singh, Virendra Kumar Mishra, Reetika Shukla","doi":"10.1007/s13157-024-01770-2","DOIUrl":null,"url":null,"abstract":"<p>Emerging contaminants (EC) are the modern age chemicals that are new to the environment. It includes pharmaceuticals &amp; personal care products (PPCPs), pesticides, hormones, artificial sweeteners, industrial chemicals, microplastics, newly discovered microbes and many other manmade chemicals. These chemicals are harmful and having negative impacts on human being and other life forms. Existing treatment systems are ineffective in treating the EC and the treated effluent act as source of pollution to the water bodies. Considering the requirement of new technologies that can remove EC, the Constructed wetlands (CWs) are getting popular and can be a valid option for the treatment of EC. In this context application of macrophytes in CW have increased the removal performance of constructed wetland system. Growing macrophytes in CW have augmented the removal of EC from these systems. In different studies macrophytes supported the removal process of EC in CW and a removal efficiency up to 97% was achieved. This review summarizes the direct and indirect roles of macrophytes in CW in the treatment of EC. Also, it evaluates the success of CW technology, in treating EC, its limitation, and future perspective. The direct role of macrophytes include precipitation on root surface, absorption, and degradation of EC by these plants. Growth of macrophytes in CWs facilitates the uptake EC by the absorption and detoxify them in their cell with the help of enzymatic and hormonal activity which supports the removal of EC in wetland system. Indirect impacts, which appear to be more significant than direct effects, include increased removal of EC through better rhizospheric microbial activity and exudate secretions, which enhances the removal by four times. Thus, this review emphasizes combined application of CW and aquatic macrophytes which augmented the performance of CW for the treatment of EC.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13157-024-01770-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging contaminants (EC) are the modern age chemicals that are new to the environment. It includes pharmaceuticals & personal care products (PPCPs), pesticides, hormones, artificial sweeteners, industrial chemicals, microplastics, newly discovered microbes and many other manmade chemicals. These chemicals are harmful and having negative impacts on human being and other life forms. Existing treatment systems are ineffective in treating the EC and the treated effluent act as source of pollution to the water bodies. Considering the requirement of new technologies that can remove EC, the Constructed wetlands (CWs) are getting popular and can be a valid option for the treatment of EC. In this context application of macrophytes in CW have increased the removal performance of constructed wetland system. Growing macrophytes in CW have augmented the removal of EC from these systems. In different studies macrophytes supported the removal process of EC in CW and a removal efficiency up to 97% was achieved. This review summarizes the direct and indirect roles of macrophytes in CW in the treatment of EC. Also, it evaluates the success of CW technology, in treating EC, its limitation, and future perspective. The direct role of macrophytes include precipitation on root surface, absorption, and degradation of EC by these plants. Growth of macrophytes in CWs facilitates the uptake EC by the absorption and detoxify them in their cell with the help of enzymatic and hormonal activity which supports the removal of EC in wetland system. Indirect impacts, which appear to be more significant than direct effects, include increased removal of EC through better rhizospheric microbial activity and exudate secretions, which enhances the removal by four times. Thus, this review emphasizes combined application of CW and aquatic macrophytes which augmented the performance of CW for the treatment of EC.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在人工湿地中利用大型营养植物作为植物修复废水中新出现的污染物的有效物种
新出现的污染物 (EC) 是现代环境中新出现的化学物质。它包括药品和amp; 个人护理产品(PPCPs)、杀虫剂、激素、人造甜味剂、工业化学品、微塑料、新发现的微生物和许多其他人造化学品。这些化学物质对人类和其他生命形式有害并产生负面影响。现有的处理系统无法有效地处理这些化学物质,处理后的污水成为水体的污染源。考虑到需要能去除氨基甲酸乙酯的新技术,建造湿地(CWs)越来越受欢迎,成为处理氨基甲酸乙酯的有效选择。在这种情况下,在 CW 中应用大型藻类提高了建造湿地系统的去除效果。在 CW 中种植大型沼泽植物提高了这些系统对氨基甲酸乙酯的去除率。在不同的研究中,大型藻类支持了化武中氨基甲酸乙酯的去除过程,去除效率高达 97%。本综述总结了大型水草在化武中处理氨基甲酸乙酯的直接和间接作用。此外,还评估了化武技术在处理氨基甲酸乙酯方面的成功经验、局限性和未来展望。大型水生植物的直接作用包括根系表面的沉淀、吸收和降解导电率。大型水生植物在化學廢物處理系統中生長,有助吸收氨基甲酸乙酯,並透過酵素和荷爾蒙活動,在細胞內分解氨基甲酸乙酯,從而清除濕地系統中的氨基甲酸乙酯。间接影响似乎比直接影响更重要,包括通过改善根瘤微生物活动和渗出物分泌增加对氨基甲酸乙酯的清除,从而将清除率提高四倍。因此,本综述强调综合应用化武和水生大型藻类可提高化武处理氨基甲酸乙酯的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1