{"title":"Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review","authors":"","doi":"10.1007/s12613-023-2709-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The flotation separation of Cu-Fe sulfide minerals at low alkalinity can be achieved using selective depressants. In the flotation system of Cu-Fe sulfide minerals, depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector. This review summarizes the advances in depressants for the flotation separation of Cu-Fe sulfide minerals at low alkalinity. These advances include use of inorganic depressants (oxidants and sulfur-oxygen compounds), natural polysaccharides (starch, dextrin, konjac glucomannan, and galactomannan), modified polymers (carboxymethyl cellulose, polyacrylamide, lignosulfonate, and tricarboxylate sodium starch), organic acids (polyglutamic acid, sodium humate, tannic acid, pyrogallic acid, salicylic acid, and lactic acid), sodium dimethyl dithiocarbamate, and diethylenetriamine. The potential application of specific inorganic and organic depressants in the flotation separation of Cu-Fe sulfide minerals at low alkalinity is reviewed. The advances in the use of organic depressants with respect to the flotation separation of Cu-Fe sulfide minerals are comprehensively detailed. Additionally, the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized. Finally, several perspectives on depressants vis-à-vis flotation separation of Cu-Fe sulfide minerals at low alkalinity are proposed.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"22 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2709-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The flotation separation of Cu-Fe sulfide minerals at low alkalinity can be achieved using selective depressants. In the flotation system of Cu-Fe sulfide minerals, depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector. This review summarizes the advances in depressants for the flotation separation of Cu-Fe sulfide minerals at low alkalinity. These advances include use of inorganic depressants (oxidants and sulfur-oxygen compounds), natural polysaccharides (starch, dextrin, konjac glucomannan, and galactomannan), modified polymers (carboxymethyl cellulose, polyacrylamide, lignosulfonate, and tricarboxylate sodium starch), organic acids (polyglutamic acid, sodium humate, tannic acid, pyrogallic acid, salicylic acid, and lactic acid), sodium dimethyl dithiocarbamate, and diethylenetriamine. The potential application of specific inorganic and organic depressants in the flotation separation of Cu-Fe sulfide minerals at low alkalinity is reviewed. The advances in the use of organic depressants with respect to the flotation separation of Cu-Fe sulfide minerals are comprehensively detailed. Additionally, the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized. Finally, several perspectives on depressants vis-à-vis flotation separation of Cu-Fe sulfide minerals at low alkalinity are proposed.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.