Neuroanatomical frameworks for volitional control of breathing and orofacial behaviors

IF 1.9 4区 医学 Q3 PHYSIOLOGY Respiratory Physiology & Neurobiology Pub Date : 2024-01-29 DOI:10.1016/j.resp.2024.104227
Pedro Trevizan-Baú , Davor Stanić , Werner I. Furuya , Rishi R. Dhingra , Mathias Dutschmann
{"title":"Neuroanatomical frameworks for volitional control of breathing and orofacial behaviors","authors":"Pedro Trevizan-Baú ,&nbsp;Davor Stanić ,&nbsp;Werner I. Furuya ,&nbsp;Rishi R. Dhingra ,&nbsp;Mathias Dutschmann","doi":"10.1016/j.resp.2024.104227","DOIUrl":null,"url":null,"abstract":"<div><p>Breathing is the only vital function that can be volitionally controlled. However, a detailed understanding how volitional (cortical) motor commands can transform vital breathing activity into adaptive breathing patterns that accommodate orofacial behaviors such as swallowing, vocalization or sniffing remains to be developed. Recent neuroanatomical tract tracing studies have identified patterns and origins of descending forebrain projections that target brain nuclei involved in laryngeal adductor function which is critically involved in orofacial behavior. These nuclei include the midbrain periaqueductal gray and nuclei of the respiratory rhythm and pattern generating network in the brainstem, specifically including the pontine Kölliker-Fuse nucleus and the pre-Bötzinger complex in the medulla oblongata. This review discusses the functional implications of the forebrain-brainstem anatomical connectivity that could underlie the volitional control and coordination of orofacial behaviors with breathing.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"323 ","pages":"Article 104227"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482400020X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breathing is the only vital function that can be volitionally controlled. However, a detailed understanding how volitional (cortical) motor commands can transform vital breathing activity into adaptive breathing patterns that accommodate orofacial behaviors such as swallowing, vocalization or sniffing remains to be developed. Recent neuroanatomical tract tracing studies have identified patterns and origins of descending forebrain projections that target brain nuclei involved in laryngeal adductor function which is critically involved in orofacial behavior. These nuclei include the midbrain periaqueductal gray and nuclei of the respiratory rhythm and pattern generating network in the brainstem, specifically including the pontine Kölliker-Fuse nucleus and the pre-Bötzinger complex in the medulla oblongata. This review discusses the functional implications of the forebrain-brainstem anatomical connectivity that could underlie the volitional control and coordination of orofacial behaviors with breathing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自主控制呼吸和口面部行为的神经解剖学框架
呼吸是唯一可以通过意志控制的生命功能。然而,人们对意志(大脑皮层)运动指令如何将重要的呼吸活动转化为适应吞咽、发声或嗅觉等口腔行为的适应性呼吸模式仍有待深入了解。最近的神经解剖学束追踪研究确定了前脑下降投射的模式和起源,这些投射的目标脑核涉及喉内收功能,而喉内收功能与口面部行为密切相关。这些核团包括中脑会厌灰以及脑干呼吸节律和模式生成网络的核团,具体包括延髓中的桥脑 Kölliker-Fuse 核团和前 Bötzinger 复合体。这篇综述讨论了前脑-脑干解剖学连接的功能意义,它可能是口面部行为与呼吸的意志控制和协调的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
期刊最新文献
Ethanol abolishes ventilatory long-term facilitation and blunts the ventilatory response to hypoxia in female rats. Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury. Impact of microbial diversity on inflammatory cytokines and respiratory pattern measured in whole-body plethysmography in guinea pig models. The acute effect of bilateral cathodic transcranial direct current stimulation on respiratory muscle strength and endurance. TRPA1 contributes to respiratory depression from tobacco aerosol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1