N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production

IF 5.6 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Minerals, Metallurgy, and Materials Pub Date : 2024-01-26 DOI:10.1007/s12613-023-2678-6
Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, Shen’gen Zhang
{"title":"N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotic photodegradation and H2 production","authors":"Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Junjie Zhang, Shen’gen Zhang","doi":"10.1007/s12613-023-2678-6","DOIUrl":null,"url":null,"abstract":"<p>Exclusive responsiveness to ultraviolet light (∼3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO<sub>2</sub>. We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO<sub>2</sub>/P-doped porous hollow g-C<sub>3</sub>N<sub>4</sub> nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1%G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of 0.1%G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO<sub>2</sub>, PCN, and N-TiO<sub>2</sub>/PCN (TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO<sub>2</sub> and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO<sub>2</sub>, PCNs, and TPCN-1, the H<sub>2</sub> production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4 times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1%G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1%G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.</p>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"37 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12613-023-2678-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exclusive responsiveness to ultraviolet light (∼3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO2. We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO2/P-doped porous hollow g-C3N4 nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1%G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of 0.1%G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO2, PCN, and N-TiO2/PCN (TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO2 and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO2, PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4 times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1%G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1%G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N 掺杂石墨烯量子点装饰的 N-TiO2/P 掺杂多孔空心 g-C3N4 纳米管复合光催化剂用于抗生素光降解和 H2 生产
对紫外线(∼3.2 eV)的唯一响应性和高光生电荷重组率是纯 TiO2 的两个主要缺点。我们结合N-掺杂石墨烯量子点(N-GQDs)、形貌调控和异质结构建策略,合成了N-GQD/N-掺杂TiO2/P-掺杂多孔空心g-C3N4纳米管(PCN)复合光催化剂(简称G-TPCN)。最佳样品(掺杂 0.1wt% N-GQD 的 G-TPCN,记为 0.1%G-TPCN)的光吸收性能显著增强,这归因于元素掺杂(P 和 N)引起的带隙变化、管状结构带来的光收集改善以及 N-GQD 的上转换效应。此外,0.1%G-TPCN 的内部电荷分离和转移能力显著提高,其载流子浓度分别是 N-TiO2、PCN 和 N-TiO2/PCN (TPCN-1) 的 3.7 倍、2.3 倍和 1.9 倍。这一现象归因于 N-TiO2 与 PCN 之间形成的 Z 型异质结、N-GQDs 优异的电子传导能力以及多孔纳米管结构所带来的短传输距离。与 N-TiO2、PCNs 和 TPCN-1 相比,0.1%G-TPCN 在可见光下产生 H2 的活性分别提高了 12.4、2.3 和 1.4 倍,其环丙沙星(CIP)降解率分别提高了 7.9、5.7 和 2.9 倍。优化的性能得益于出色的光响应性以及载流子分离和迁移效率的提高。最后,提出了 0.1%G-TPCN 的光催化机理以及五种可能的 CIP 降解途径。本研究阐明了多种修饰策略协同提高 0.1%G-TPCN 光催化性能的机理,为合理设计新型光催化剂用于环境修复和太阳能转换提供了一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
16.70%
发文量
205
审稿时长
2 months
期刊介绍: International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.
期刊最新文献
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor High corrosion and wear resistant electroless Ni-P gradient coatings on aviation aluminum alloy parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1