Pablo Iturrieta, Matthew C. Gerstenberger, Chris Rollins, Russ Van Dissen, Ting Wang, Danijel Schorlemmer
{"title":"Implementing Non‐Poissonian Forecasts of Distributed Seismicity into the 2022 Aotearoa New Zealand National Seismic Hazard Model","authors":"Pablo Iturrieta, Matthew C. Gerstenberger, Chris Rollins, Russ Van Dissen, Ting Wang, Danijel Schorlemmer","doi":"10.1785/0120230168","DOIUrl":null,"url":null,"abstract":"Seismicity usually exhibits a non‐Poisson spatiotemporal distribution and could undergo nonstationary processes. However, the Poisson assumption is still deeply rooted in current probabilistic seismic hazard analysis models, especially when input catalogs must be declustered to obtain a Poisson background rate. In addition, nonstationary behavior and scarce earthquake records in regions of low seismicity can bias hazard estimates that use stationary or spatially precise forecasts. In this work, we implement hazard formulations using forecasts that trade‐off spatial precision to account for overdispersion and nonstationarity of seismicity in the form of uniform rate zones (URZs), which describe rate variability using non‐Poisson probabilistic distributions of earthquake numbers. The impact of these forecasts in the hazard space is investigated by implementing a negative‐binomial formulation in the OpenQuake hazard software suite, which is adopted by the 2022 Aotearoa New Zealand National Seismic Hazard Model. For a 10% exceedance probability of peak ground acceleration (PGA) in 50 yr, forecasts that only reduce the spatial precision, that is, stationary Poisson URZ models, cause up to a twofold increase in hazard for low‐seismicity regions compared to spatially precise forecasts. Furthermore, the inclusion of non‐Poisson temporal processes in URZ models increases the expected PGA by up to three times in low‐seismicity regions, whereas the effect on high‐seismicity is minimal (∼5%). The hazard estimates presented here highlight the relevance, as well as the feasibility, of incorporating analytical formulations of seismicity that go beyond the inadequate stationary Poisson description of seismicity.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"63 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230168","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Seismicity usually exhibits a non‐Poisson spatiotemporal distribution and could undergo nonstationary processes. However, the Poisson assumption is still deeply rooted in current probabilistic seismic hazard analysis models, especially when input catalogs must be declustered to obtain a Poisson background rate. In addition, nonstationary behavior and scarce earthquake records in regions of low seismicity can bias hazard estimates that use stationary or spatially precise forecasts. In this work, we implement hazard formulations using forecasts that trade‐off spatial precision to account for overdispersion and nonstationarity of seismicity in the form of uniform rate zones (URZs), which describe rate variability using non‐Poisson probabilistic distributions of earthquake numbers. The impact of these forecasts in the hazard space is investigated by implementing a negative‐binomial formulation in the OpenQuake hazard software suite, which is adopted by the 2022 Aotearoa New Zealand National Seismic Hazard Model. For a 10% exceedance probability of peak ground acceleration (PGA) in 50 yr, forecasts that only reduce the spatial precision, that is, stationary Poisson URZ models, cause up to a twofold increase in hazard for low‐seismicity regions compared to spatially precise forecasts. Furthermore, the inclusion of non‐Poisson temporal processes in URZ models increases the expected PGA by up to three times in low‐seismicity regions, whereas the effect on high‐seismicity is minimal (∼5%). The hazard estimates presented here highlight the relevance, as well as the feasibility, of incorporating analytical formulations of seismicity that go beyond the inadequate stationary Poisson description of seismicity.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.