K. A. Ovchinnikov, E. V. Podlesnova, F. E. Safarov, A. T. Akhmetov, A. V. Fakhreeva, E. I. Gusarova, N. A. Sergeeva, A.G. Telin
{"title":"Stabilization of Swellable Aluminosilicate Suspensions","authors":"K. A. Ovchinnikov, E. V. Podlesnova, F. E. Safarov, A. T. Akhmetov, A. V. Fakhreeva, E. I. Gusarova, N. A. Sergeeva, A.G. Telin","doi":"10.1134/S1061933X2360094X","DOIUrl":null,"url":null,"abstract":"<p>The goal of this study is to increase the energy efficiency of pipeline hydraulic transport of water-swellable aluminosilicate dispersions. A model commercial suspension, the filler of which is a complex mixture of aluminosilicates, has been used to develop an approach that makes it possible to improve the technological properties of such suspensions. Modification of the suspensions consists in adding organic and inorganic inhibitors of swelling of dispersed phase particles, as well as nonionic surfactants. The influence of the additives leads to a decrease in the yield stress and an increase in sedimentation stability of the heterogeneous systems. It has been shown that the use of the complex modifying additive prevents the particles of the model suspension from agglomeration and provides it with sedimentation stability at temperatures up to 70°C, which is important for the technical process in which the suspension is intended to be used. Technically, the research is of an applied nature. A well-known approach to modifying suspensions is used, which consists in combating the aggregation of dispersed phase particles and blocking ion exchange between them and the dispersion medium. The performed set of rheological shear and oscillation tests and the study of the sedimentation stability of the suspensions in the presence of various modifying additives have resulted in optimizing their composition. The practical result of the work is the successful hydrotransport of the suspension in which the content of the dispersed phase is 50% higher than that in the unmodified suspension, thus increasing the energy efficiency of the process.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X2360094X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of this study is to increase the energy efficiency of pipeline hydraulic transport of water-swellable aluminosilicate dispersions. A model commercial suspension, the filler of which is a complex mixture of aluminosilicates, has been used to develop an approach that makes it possible to improve the technological properties of such suspensions. Modification of the suspensions consists in adding organic and inorganic inhibitors of swelling of dispersed phase particles, as well as nonionic surfactants. The influence of the additives leads to a decrease in the yield stress and an increase in sedimentation stability of the heterogeneous systems. It has been shown that the use of the complex modifying additive prevents the particles of the model suspension from agglomeration and provides it with sedimentation stability at temperatures up to 70°C, which is important for the technical process in which the suspension is intended to be used. Technically, the research is of an applied nature. A well-known approach to modifying suspensions is used, which consists in combating the aggregation of dispersed phase particles and blocking ion exchange between them and the dispersion medium. The performed set of rheological shear and oscillation tests and the study of the sedimentation stability of the suspensions in the presence of various modifying additives have resulted in optimizing their composition. The practical result of the work is the successful hydrotransport of the suspension in which the content of the dispersed phase is 50% higher than that in the unmodified suspension, thus increasing the energy efficiency of the process.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.