Hermitian Dynamic Mode Decomposition - numerical analysis and software solution

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2024-01-26 DOI:10.1145/3641884
Zlatko Drmač
{"title":"Hermitian Dynamic Mode Decomposition - numerical analysis and software solution","authors":"Zlatko Drmač","doi":"10.1145/3641884","DOIUrl":null,"url":null,"abstract":"<p>The Dynamic Mode Decomposition (DMD) is a versatile and increasingly popular method for data driven analysis of dynamical systems that arise in a variety of applications in e.g. computational fluid dynamics, robotics or machine learning. In the framework of numerical linear algebra, it is a data driven Rayleigh-Ritz procedure applied to a DMD matrix that is derived from the supplied data. In some applications, the physics of the underlying problem implies hermiticity of the DMD matrix, so the general DMD procedure is not computationally optimal. Furthermore, it does not guarantee important structural properties of the Hermitian eigenvalue problem and may return non-physical solutions. This paper proposes a software solution to the Hermitian (including the real symmetric) DMD matrices, accompanied with a numerical analysis that contains several fine and instructive numerical details. The eigenpairs are computed together with their residuals, and perturbation theory provides error bounds for the eigenvalues and eigenvectors. The software is developed and tested using the <sans-serif>LAPACK</sans-serif> package.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"274 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641884","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The Dynamic Mode Decomposition (DMD) is a versatile and increasingly popular method for data driven analysis of dynamical systems that arise in a variety of applications in e.g. computational fluid dynamics, robotics or machine learning. In the framework of numerical linear algebra, it is a data driven Rayleigh-Ritz procedure applied to a DMD matrix that is derived from the supplied data. In some applications, the physics of the underlying problem implies hermiticity of the DMD matrix, so the general DMD procedure is not computationally optimal. Furthermore, it does not guarantee important structural properties of the Hermitian eigenvalue problem and may return non-physical solutions. This paper proposes a software solution to the Hermitian (including the real symmetric) DMD matrices, accompanied with a numerical analysis that contains several fine and instructive numerical details. The eigenpairs are computed together with their residuals, and perturbation theory provides error bounds for the eigenvalues and eigenvectors. The software is developed and tested using the LAPACK package.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
赫米特动态模式分解 - 数值分析和软件解决方案
动态模态分解(DMD)是一种通用且日益流行的方法,用于对计算流体动力学、机器人学或机器学习等各种应用中出现的动态系统进行数据驱动分析。在数值线性代数的框架内,它是一种数据驱动的 Rayleigh-Ritz 程序,适用于根据所提供的数据导出的 DMD 矩阵。在某些应用中,基本问题的物理特性意味着 DMD 矩阵的隐蔽性,因此一般的 DMD 程序在计算上并不是最优的。此外,它不能保证赫米特特征值问题的重要结构特性,并可能返回非物理解。本文提出了赫米蒂(包括实对称)DMD 矩阵的软件解决方案,并附带了数值分析,其中包含一些精细而有启发性的数值细节。该软件计算了特征对及其残差,并通过扰动理论给出了特征值和特征向量的误差范围。该软件使用 LAPACK 软件包进行开发和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1