Peter Dankelmann, Jane Morgan, Emily Rivett-Carnac
{"title":"The Oriented Diameter of Graphs with Given Connected Domination Number and Distance Domination Number","authors":"Peter Dankelmann, Jane Morgan, Emily Rivett-Carnac","doi":"10.1007/s00373-023-02741-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a bridgeless graph. An orientation of <i>G</i> is a digraph obtained from <i>G</i> by assigning a direction to each edge. The oriented diameter of <i>G</i> is the minimum diameter among all strong orientations of <i>G</i>. The connected domination number <span>\\(\\gamma _c(G)\\)</span> of <i>G</i> is the minimum cardinality of a set <i>S</i> of vertices of <i>G</i> such that every vertex of <i>G</i> is in <i>S</i> or adjacent to some vertex of <i>S</i>, and which induces a connected subgraph in <i>G</i>. We prove that the oriented diameter of a bridgeless graph <i>G</i> is at most <span>\\(2 \\gamma _c(G) +3\\)</span> if <span>\\(\\gamma _c(G)\\)</span> is even and <span>\\(2 \\gamma _c(G) +2\\)</span> if <span>\\(\\gamma _c(G)\\)</span> is odd. This bound is sharp. For <span>\\(d \\in {\\mathbb {N}}\\)</span>, the <i>d</i>-distance domination number <span>\\(\\gamma ^d(G)\\)</span> of <i>G</i> is the minimum cardinality of a set <i>S</i> of vertices of <i>G</i> such that every vertex of <i>G</i> is at distance at most <i>d</i> from some vertex of <i>S</i>. As an application of a generalisation of the above result on the connected domination number, we prove an upper bound on the oriented diameter of the form <span>\\((2d+1)(d+1)\\gamma ^d(G)+ O(d)\\)</span>. Furthermore, we construct bridgeless graphs whose oriented diameter is at least <span>\\((d+1)^2 \\gamma ^d(G) +O(d)\\)</span>, thus demonstrating that our above bound is best possible apart from a factor of about 2.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02741-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a bridgeless graph. An orientation of G is a digraph obtained from G by assigning a direction to each edge. The oriented diameter of G is the minimum diameter among all strong orientations of G. The connected domination number \(\gamma _c(G)\) of G is the minimum cardinality of a set S of vertices of G such that every vertex of G is in S or adjacent to some vertex of S, and which induces a connected subgraph in G. We prove that the oriented diameter of a bridgeless graph G is at most \(2 \gamma _c(G) +3\) if \(\gamma _c(G)\) is even and \(2 \gamma _c(G) +2\) if \(\gamma _c(G)\) is odd. This bound is sharp. For \(d \in {\mathbb {N}}\), the d-distance domination number \(\gamma ^d(G)\) of G is the minimum cardinality of a set S of vertices of G such that every vertex of G is at distance at most d from some vertex of S. As an application of a generalisation of the above result on the connected domination number, we prove an upper bound on the oriented diameter of the form \((2d+1)(d+1)\gamma ^d(G)+ O(d)\). Furthermore, we construct bridgeless graphs whose oriented diameter is at least \((d+1)^2 \gamma ^d(G) +O(d)\), thus demonstrating that our above bound is best possible apart from a factor of about 2.
设 G 是无桥图。G 的定向是通过给每条边分配一个方向而得到的数图。G 的定向直径是 G 的所有强定向中的最小直径。G 的连通支配数(\gamma _c(G)\)是 G 的顶点集合 S 的最小卡片度,该集合使得 G 的每个顶点都在 S 中或与 S 的某个顶点相邻,并且在 G 中诱导出一个连通子图。我们证明,如果 \(\gamma _c(G)\) 是偶数,那么无桥图 G 的定向直径最多为 \(2 \gamma _c(G) +3\) ;如果 \(\gamma _c(G)\) 是奇数,那么无桥图 G 的定向直径最多为 \(2 \gamma _c(G) +2\) 。这个界限很尖锐。对于 \(d \in {\mathbb {N}}\), G 的 d-distance domination number \(\gamma ^d(G)\)是 G 的顶点集合 S 的最小卡片度,这样 G 的每个顶点到 S 的某个顶点的距离最多为 d。作为上述连通支配数结果的推广应用,我们证明了形式为 \((2d+1)(d+1)\gamma ^d(G)+O(d)\)的定向直径上限。此外,我们构造的无桥图的有向直径至少是 \((d+1)^2 \gamma ^d(G)+O(d)\),从而证明了我们的上述约束除了约 2 倍的系数外是最好的。