{"title":"Considerations in Bayesian agent-based modeling for the analysis of COVID-19 data","authors":"Seungha Um, Samrachana Adhikari","doi":"10.1002/sam.11655","DOIUrl":null,"url":null,"abstract":"Agent-based model (ABM) has been widely used to study infectious disease transmission by simulating behaviors and interactions of autonomous individuals called agents. In the ABM, agent states, for example infected or susceptible, are assigned according to a set of simple rules, and a complex dynamics of disease transmission is described by the collective states of agents over time. Despite the flexibility in real-world modeling, ABMs have received less attention by statisticians because of the intractable likelihood functions which lead to difficulty in estimating parameters and quantifying uncertainty around model outputs. To overcome this limitation, a Bayesian framework that treats the entire ABM as a Hidden Markov Model has been previously proposed. However, existing approach is limited due to computational inefficiency and unidentifiability of parameters. We extend the ABM approach within Bayesian framework to study infectious disease transmission addressing these limitations. We estimate the hidden states, represented by individual agent's states over time, and the model parameters by applying an improved particle Markov Chain Monte Carlo algorithm, that accounts for computing efficiency. We further evaluate the performance of the approach for parameter recovery and prediction, along with sensitivity to prior assumptions under various simulation conditions. Finally, we apply the proposed approach to the study of COVID-19 outbreak on Diamond Princess cruise ship. We examine the differences in transmission by key demographic characteristics, while considering two different networks and limited COVID-19 testing in the cruise.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"4 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11655","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Agent-based model (ABM) has been widely used to study infectious disease transmission by simulating behaviors and interactions of autonomous individuals called agents. In the ABM, agent states, for example infected or susceptible, are assigned according to a set of simple rules, and a complex dynamics of disease transmission is described by the collective states of agents over time. Despite the flexibility in real-world modeling, ABMs have received less attention by statisticians because of the intractable likelihood functions which lead to difficulty in estimating parameters and quantifying uncertainty around model outputs. To overcome this limitation, a Bayesian framework that treats the entire ABM as a Hidden Markov Model has been previously proposed. However, existing approach is limited due to computational inefficiency and unidentifiability of parameters. We extend the ABM approach within Bayesian framework to study infectious disease transmission addressing these limitations. We estimate the hidden states, represented by individual agent's states over time, and the model parameters by applying an improved particle Markov Chain Monte Carlo algorithm, that accounts for computing efficiency. We further evaluate the performance of the approach for parameter recovery and prediction, along with sensitivity to prior assumptions under various simulation conditions. Finally, we apply the proposed approach to the study of COVID-19 outbreak on Diamond Princess cruise ship. We examine the differences in transmission by key demographic characteristics, while considering two different networks and limited COVID-19 testing in the cruise.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.