Godfrey M. Shayo, Elianaso Elimbinzi, Godlisten N. Shao
{"title":"Water-based technologies for improving water quality at the point of use: A review","authors":"Godfrey M. Shayo, Elianaso Elimbinzi, Godlisten N. Shao","doi":"10.1002/wnan.1940","DOIUrl":null,"url":null,"abstract":"Water safety concerns are increasing tremendously as a result of the rising population and environmental pollution. As a result, viable water treatment approaches need to be designed to meet the water consumption demands of the population, particularly in developing countries. The recent technological advances in water treatment and purification are well articulated in this review. The efficiency of the materials used for purification and their affordability for people living in rural and remote settlements in various parts of the world have been discussed. Water treatment techniques prior to the rapid advancement of science and technology included a variety of strategies such as coagulation/flocculation, filtration, disinfection, flotation and pH correction. The use of nanotechnology in water treatment and purification has modernized the purification process. Therefore, efficient removal of microbes such as bacteria and viruses are exquisitely accomplished. These technologies may include membrane filtration, ultraviolet irradiation, advanced oxidation ion-exchange and biological filtration technologies. Thus, nanotechnology allows for the fabrication of less expensive systems, allowing even low-income people to benefit from it. Most developing countries find these technologies particularly valuable because access to clean and safe water for drinking and residential needs is critical. This is because access to municipal water supplies is also difficult.","PeriodicalId":501345,"journal":{"name":"WIREs Nanomedicine and Nanobiotechnology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Nanomedicine and Nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.1940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Water safety concerns are increasing tremendously as a result of the rising population and environmental pollution. As a result, viable water treatment approaches need to be designed to meet the water consumption demands of the population, particularly in developing countries. The recent technological advances in water treatment and purification are well articulated in this review. The efficiency of the materials used for purification and their affordability for people living in rural and remote settlements in various parts of the world have been discussed. Water treatment techniques prior to the rapid advancement of science and technology included a variety of strategies such as coagulation/flocculation, filtration, disinfection, flotation and pH correction. The use of nanotechnology in water treatment and purification has modernized the purification process. Therefore, efficient removal of microbes such as bacteria and viruses are exquisitely accomplished. These technologies may include membrane filtration, ultraviolet irradiation, advanced oxidation ion-exchange and biological filtration technologies. Thus, nanotechnology allows for the fabrication of less expensive systems, allowing even low-income people to benefit from it. Most developing countries find these technologies particularly valuable because access to clean and safe water for drinking and residential needs is critical. This is because access to municipal water supplies is also difficult.